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Abstract: Safe motion together with improved economy and traveling performance levels
are important requirements against automated vehicles. Thus, the design of enhanced control
systems is requested, which contain conventional model-based controllers and the use of uncon-
ventional approaches, e.g., learning features and cloud-based methods. This paper proposes a
hierarchical vehicle control design method with learning functions, which incorporates control in
two levels, such as in cloud level and in vehicle level. The control on the cloud level is designed
by using reinforcement learning, with which the maximum speed for the vehicle is achieved. The
vehicle level contains a robust controller and a supervisor, with which the collision avoidance of
the vehicle is guaranteed. The hierarchical control guarantees performance requirement of safe
motion, i.e., collision avoidance in all scenarios, even if the connection with the cloud is lost. The
proposed control on indoor Hardware-in-the-Loop platform is implemented. The effectiveness of
the control and the safe motion of the vehicle under various scenarios with and without cloud
connection are demonstrated.
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1. INTRODUCTION AND MOTIVATION

Increasing number of vehicles poses the challenge of
their safe motion under varying environmental condi-
tions. Moreover, the improvement of effectiveness requires
the fast motion of the vehicles, which can be facilitated
through their coordination. These challenges motivate the
use of cloud technologies, with which the high amount of
information can be processed, stored and used for control
purposes.

A recent hot topic of vehicle and mobile robot control
is cloud-aided learning. There are high number of cloud
solutions, which can vary on tools and technologies used
in the build-up of such systems (Dawarka and Bekaroo
[2022]). The aim of clouds for vehicles and mobile robots is
to use a centralized server for performing high complexity
computation process, whose realization requires the opti-
mization of data transfer on the network (Chinchali et al.
[2021]). One of the purpose of learning feature on the
cloud is to provide optimal resource allocation, e.g., Liu
1 The research was supported by the Ministry of Innovation and
Technology NRDI Office within the framework of the Autonomous
Systems National Laboratory Program. The presented work of R.
Lovas was also supported by the János Bolyai Research Scholarship
of the Hungarian Academy of Sciences. On behalf of Project ARNL
we thank for the usage of ELKH Cloud (https://science-cloud.hu/)
that significantly helped us achieving the results published in this
paper.

et al. [2018] proposes a resource allocation scheme based
on reinforcement learning (RL). A further solution is to
utilize the computational capability of the mobile agent,
and simultaneously, to consider the latency and CPU avail-
ability, which through a RL-based deep Q-network can
be achieved (Penmetcha and Min [2021]). The problem
of best quality service against stochastic communication
delays and task deadline in automotive context can also
be found (Li et al. [2018]).

The topic of this paper is related to the control application
type of cloud-aided learning, i.e., to improve performances
of vehicles through learning-based features. Especially, it
focuses on the motion control of vehicles on an indoor
platform, which must result in collision-free and time-
saving motion profile. Although learning-based approaches
have high efficiency to solve these control tasks (He et al.
[2021], Aradi [2020]), a crucial problem is the verification
of the resulted control agent from the aspect of safety
performance requirements (Hewing et al. [2020], Tran et al.
[2020]). Therefore, in the last years several papers in the
topic of safe learning have been proposed, e.g. using model
predictive framework (Muntwiler et al. [2020], Rosolia
and Borrelli [2018]), using Hamilton-Jacobi reachability
methods (Fisac et al. [2019]) or using Satisfiability Modulo
Theory (Huang et al. [2018]).

This paper proposes the implementation of a novel cloud-
aided safe learning method for vehicles, focusing on the
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implementation of the method for indoor vehicles. The
predefined safety specifications through the architecture of
the robust control system are guaranteed. The control of
the vehicle in a hierarchical architecture, i.e., vehicle level
and cloud level, is designed. The aim of the cloud-level is
to achieve enhanced control performances using the high
computation capacity of the cloud. Thus, reinforcement
learning on the cloud level for achieving maximum speed
of the vehicle is implemented. Moreover, on the vehicle
level the safety requirement, i.e., collision avoidance, are
guaranteed. The advantage of the solution is that the safe
performance specifications even at the degradation of the
communication in the network can be guaranteed.

The paper is organized as follows. The hierarchical control
structure with the design on the vehicle level and on
the cloud level is presented in Section 2. The focus of
Section 3 is the implementation of the presented control
design on indoor vehicles. Thus, Section 3 proposes the
Hardware-in-the-Loop (HiL) environment with augmented
reality feature, the architecture and the orchestration of
the cloud and some results of roundabout scenarios of
vehicles. Finally, the paper in Section 4 is concluded.

2. HIERARCHICAL DESIGN FOR MOTION
CONTROL OF INDOOR VEHICLES

In this section the hierarchical control design for indoor
vehicles is proposed. First, the architecture of the control is
presented. Second, the design of the road level control and
third, the learning feature on the cloud level are proposed.

The architecture of the hierarchical control with each levels
in Figure 1 is illustrated. The goal of the control is to
provide single motion input u(k) for a given individual
vehicle, i.e., longitudinal acceleration command a1(k),
with which the vehicle moves along its route. u(k) is
computed by the supervisor, such as u(k) = uK(k)+∆(k),
where uK(k) is the output of the robust controller on the
vehicle level. ∆(k) ∈ ∆ is an additional term of the control
input and ∆ is the finite domain of ∆(k). In the control
architecture, uL(k) is a candidate control input, which is
suggested by the RL-based controller. The value of ∆(k) is
computed to minimize the difference (u(k)− uL(k))

2, and
simultaneously, to avoid the collision of the vehicle with
another vehicle.

vehicle - traffic

RL-based
controller

measured
signals

robustsupervisor
controller

u

uL

uK

environment

vehicle level

cloud level

Fig. 1. Illustration of the control architecture

It is necessary to distinguish the roles of the RL-based and
the robust controllers. The robust controller is designed

to provide uK(k), with which the collision avoidance for
all scenarios is guaranteed, i.e., uK(k),∆(k) pairs for all
scenarios can be found. It requires the incorporation of
the domain ∆ in the design of the robust controller,
which is interpreted as an input uncertainty domain in
the context of the robust control, see Németh and Gáspár
[2021]. The role of the RL-based controller is to provide
uL(k) candidate control input, with which further non-
safety performance requirements can be considered, e.g.
maximization of the vehicle speed or the limitation of
the lateral acceleration to protect delivered goods. Since
the RL-based controller through a training process with
high number of varying episodes is resulted, uL(k) can be
unable to guarantee collision avoidance for all scenarios in
itself.

2.1 Control design on the vehicle level

The goal of the control on the vehicle level is to provide
u(k), with which collision avoidance can be guaranteed,
and the suggestion of the cloud, i.e., uL(k) is considered as
much as possible. Since the design of the robust control in a
preliminary work (Németh and Gáspár [2021]) is available,
this subsection focuses on the formulation of the strategy
in the supervisor.

The goal of the supervisor is to provide ∆(k), with which
the collision avoidance of the vehicles can be guaranteed.
Figure 2(b) illustrates the planar motion of vehicles on
the ground, whose routes are intersected. The intersection
of the routes is defined as the conflict point. Consider-
ing point-mass model of vehicles, the control problem is
independent from the direction of vehicle motion. There-
fore, avoiding vehicle collision problem can be transformed
to the problem of finding trajectory outside of a circle
(Németh and Gáspár [2021]). In the control system, the
supervisor must provide ∆(k) additional term for u(k) =
uK(k)+∆(k), with which the following constraint is guar-
anteed:

s1(k + 1, u(k))2 + s2(k + 1)2 ≥ s2safe, (1)

where ssafe is a predefined safety distance, which must
be kept during the motion of the vehicles. In the selec-
tion of ssafe the physical sizes of the vehicles must be
considered, which is able to compensate the insufficiency
of the point-mass model. Distance s2(k) and the speed
of the uncontrolled vehicle are considered to be measured
(e.g., through an indoor motion capture system) and a
prediction through s2(k + 1) = s2(k) + v2(k)T is given,
where T is the time step between k and k + 1. Thus,
s1(k + 1, u(k)), s2(k + 1) mean distances from the conflict
point at the next time step. The motion of the controlled
vehicle is formed as

s1(k + 1) = s1(k) + v1(k)T + a1(k)
T 2

2
, (2)

where a1(k) = u(k), v1(k) is longitudinal velocity. The
formulation of the constraint can be provided for various
types of vehicle interactions, see Figure 2. Following a
preceding vehicle can be handled that actual position of
the preceding vehicle is the critical point, i.e., s2 ≡ 0
and s1(k) is the distance between them (Figure 2(a)).
Thus, (1) is turned to s1(k+1, u(k)) ≥ ssafe. Intersection
scenarios (Figure 2(b)) with n number of vehicles through
multiple constraints for s1,i, si(k), i ∈ [1;n]. In this
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case the conflict points can be defined as the middles of
the intersections. Furthermore, roundabout is a complex
scenario with intersections and vehicle following tasks,
see Figure 2(c)). Safe motion in roundabout requires the
modification of the conflict point during the motion of
the vehicle. Thus, guaranteeing safe motion of a vehicle
requires a function, which selects the current conflict
point in the region of interest concerning the surrounding
vehicles. From these information si(k) values are computed
for (1).

X

Y

vehicle 1

vehicle 2

conflict points1

(a) Following

X

Y

vehicle 1

vehicle 2

conflict point 1
s1,1

s2

vehicle 3

conflict point 2 s3

s1,2

(b) Intersection

X

Y

vehicle 1

vehicle 2

conflict point 1

s1

s2

vehicle 2

conflict point 2

vehicle 1

s1

(c) Roundabout

Fig. 2. Typical vehicle interactions

The output of the supervisor is u(k), which is recom-
mended to be close to the candidate control input uL(k)
and similarly, the safety constraints (1) for n number of
vehicles must be satisfied. It leads to a quadratic optimiza-
tion task:

min
∆(k)

(
u(k)− uL(k)

)2

(3a)

subject to

s1,i(k + 1, u(k))2 + si(k + 1)2 ≥s2safe,∀i ∈ [1, n], (3b)

∆ ∈∆. (3c)

The formed constrains (3b) for avoiding collision has
quadratic form, which can pose the requirement of in-
creased computation effort. Therefore, it can be beneficial
to reformulate (3b) to disjunctive linear inequalities (Be-
lotti et al. [2011]), see its method in Németh and Gáspár
[2021].

The solution of the optimization problem (3) with the
linearization of the constraint (3b) can lead to appropriate
longitudinal acceleration of the automated vehicle. Nev-
ertheless, in case of some special traffic scenarios, e.g., a
surrounding vehicle unexpectedly moves inside of ssafe dis-

tance, the optimization problem (3) do not have solution.
Its reason is that [s1(k), s2(k)] is inside of the circle and
thus, tangent lines cannot be found. In these scenarios for
safety reasons, the minimum of ∆(k) must be selected,
which leads to the stopping of the automated vehicle.

2.2 Learning feature on the cloud level

In this section achieving of learning function on the cloud-
level is presented. The goal of the learning is to improve
non-safety performance level of the controlled system, thus
the speed of the vehicle along its route is maximized. The
training of the RL-based controller on the environment,
which contains the vehicle model and the vehicle level con-
trol, through deep deterministic policy gradient method
(DDPG) is performed.

In case of the learning process, the environment for re-
inforcement learning involves the vehicle-traffic environ-
ment, the robust controller and the supervisor, see Figure
1. The input, i.e., the observation of the RL-based con-
troller is represented by S(k), the output of the controller
is uL(k). The observation contains measured signals on the
vehicle (v1(k), s1(k)) and on the surrounding ns number
of vehicles (vj(k), sj(k), j ∈ [1;ns]), where in this paper
ns = 3 is selected. The output of the controller is selected
to be limited, i.e., uL(k) ∈ [uL,min, uL,max], where the lim-
its express the physically feasible minimum and maximum
acceleration commands.

A selected DDPG method for learning results in an actor-
critic RL-based controller that computes an optimal policy
for maximizing long-term value of reward function r(k)
(Lillicrap et al. [2016]). In the method actor and critic
approximators are used. Both approximators use the ob-
servations, which are represented by S. The purpose of the
actor approximator µ(S) is to find action A with uL(k),
which maximizes the long-term future reward. The role of
criticQ(S,A) is to find the expected value of the long-term
future reward for the task.

The reward function in the learning process of the paper
contains two terms, such as longitudinal speed of the
vehicle and difference between u(k), uL(k):

r(k) = v1(k)−Q(u(k)− uL(k))
2, (4)

where Q is a positive scalar weighting factor, whose role is
to provide a balance between the terms in r(k). The reward
can be interpreted as follows. v1(k) in r(k) represents the
performance requirement of increasing vehicle speed along
its route. If r(k) = v1(k) is selected as a reward function,
the solution for uL(k) is trivial, i.e., uL(k) = uL,max for
all k. It results in that in this case uL(k) along the route
of the vehicle is often overwritten. Its reduction requires
the consideration of the term (u(k)− uL(k))

2 in r(k) and
Q sets the balance between the two terms. If Q is selected
for a high value, (u(k)−uL(k))

2 has increased importance
during the training process. In this case uL(k) is able to
approximate u(k), which leads to the reduction of the
speed of the vehicle. Therefore, it is requested to find a
balance between the two terms, which can be achieved
through the appropriate selection of Q.

The training can require performing high episode number.
Since the training process requests the environment, con-
taining with the vehicle, the learning can be expensive or
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unfeasible in practice. Instead of the real physical system
it is recommended to use digital twin of the vehicle, with
which the costs of the training process can significantly re-
duce. Since in the given example of this paper, the vehicle
moves with limited speed in an indoor environment, digital
twin of vehicle motion through kinematic representation is
created, see (2).

3. IMPLEMENTATION OF THE MOTION CONTROL
ALGORITHM

The goal of this section is to propose the implementation of
the motion control algorithm. First the HiL environment
with the visualization of the augmented reality is pre-
sented. Since cloud has high importance in the learning is-
sue, its architecture and orchestration are detailed. Finally,
effectiveness of the controlled system on some examples are
demonstrated.

3.1 HiL environment with augmented reality

The scheme of the HiL architecture is illustrated in Figure
3. The communication between the elements through their
connection to Robot Operating System (ROS) is realized.
The vehicles, the motion capture system, the cloud and
the computer, the tablet as nodes into the ROS network
are connected.

Fig. 3. Scheme of the HiL architecture

The role of the OptiTrack motion capture system is to
measure the position and the speed of the vehicles, which
to the ROS server are transmitted. The system contains
6 cameras, the motion of the vehicles through passive
markers are calculated and the error of the positioning
is below ±0.2mm.

In the given setup F1TENTH type of 1/10 sized wheeled
RC vehicles are used. The vehicle contains Jetson Xavier
NX computer and various sensors, i.e., camera, LiDAR,
IMU etc. In this paper the signals of these sensors are
not used for control purposes, but in the cloud are stored.
The candidate control input uL(k) and the position of
surrounding virtual and physical vehicles for the controlled
vehicle through Wi-Fi on the ROS network are transmit-
ted. Note that lateral steering control of the vehicle also on
this level is implemented. The applied PID-based steering
controller uses the difference of vehicle position and of
route centerline as inputs, and thus, computes front wheel
steering angle.

The motions of the virtual vehicles on a computer using
Matlab based on the vehicle model (2) are simulated.
The advantage of virtual vehicles is that high number
of vehicles without their expensive physical realization in

learning and evaluation process can be incorporated. The
augmented reality, with which the virtual vehicles can be
visualized, is implemented on a tablet with Android. For
the visualization an application based on Vuforia engine
in Unity is developed. The operation requires a marker
(e.g. on the floor) for the positioning of the tablet, and
position, orientation information on the virtual vehicles
for the tablet are transmitted.

Finally, the cloud, containing the cloud level of the control
architecture, to the ROS network is also connected. For
achieving RL-based controller, in this paper the Reinforce-
ment Learning Toolbox of Matlab is used (Mat [2020]).

3.2 Architecture and orchestration of the cloud

In the framework of this research the Cloud and Big
Data-based Research Platform are being developed on the
ELKH Cloud, which is an OpenStack based Infrastructure-
as-a-Service science cloud, representing a pool of scalable
computing, storage and network resources. The connection
between the local environment and the cloud-based one
is provided via secure VPN connection (”4. VPN Host”).
The Reinforcement Learning Toolbox of Matlab is running
on a dedicated virtual machine (VM) due to performance
considerations. Additionally, two other components are
present. First, an ingestion component (”7. ROS Inges-
tion”) is running that acts as a bridge for ingesting metrics
from the ROS network into the Research Platform for
further analysis. Second, a Python-based RL agent is being
evaluated as an alternative of the Matlab. The architecture
consists of several other components (e.g., hosts depicted
as ”Platform-A” to ”Platform-E”, network components
such as routers and external network connections shown
in Figure 4).

Fig. 4. High-level architecture presenting the local to cloud
connection and components

Figure 5 provides a data-flow and platform oriented per-
spective, where HiL Cloud Level Ctrl. group contains the
HiL cloud components. The remaining groups are part of
the core platform, which is designed to support multiple
use cases. It is loosely based on the Lambda-architecture
pattern (Marz [2011]), open source, software container-
based, and builds on previous experience building IoT
data platforms (Lovas et al. [2018]). Its Staging & Data
Lake stage is responsible for data ingestion via standard-
ized interfaces. Currently, MQTT and native Kafka for
streaming data, Amazon S3 for non-structured or blob
data, and ODBC for relational data are supported. In our
experience MQTT is common ground for IoT devices and
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similarly, S3 is for blob data. For the HiL environment
a ROS to MQTT bridge acts as the only data ingestion
component. However, we are planning to connect other
data sources such as rosbags. Additionally, the first stage
acts as a staging area for all incoming data. Here data
is retained until explicitly removed, or a default expiry is
reached. The (Pre-)Processing stage is responsible for data
transformation. Here Apache NiFi serves as the ”glue” be-
tween stages, it is responsible for the data-flow, and also for
lightweight transformations. For more complex processing
tasks Kafka Streams tasks are also available for streaming
data, and custom tasks for batch computation. All tasks
are executed as software-containers via Docker and Kuber-
netes. The Data Warehouse stage is responsible for storing
and serving data. We rely on TimescaleDB for storing
time-series data. It is an extension on top of PostgreSQL,
which is in turn used for storing relational data and data
warehousing functionality overall. The Business Intelli-
gence (BI) stage is responsible for providing dashboard
and visualization capabilities. Currently, Apache Superset
has been selected, although other BI tools (such as Power
BI) can be connected via an ODBC interface. Additionally,
ad-hoc queries and self-service data exploration are also
supported either via Superset or via Jupyter notebooks.
All platform components are monitored using the open
source Prometheus monitoring system and Grafana for
monitoring dashboards.

Fig. 5. Architecture of the Cloud and Big Data-based
Research Platform: Core and HiL components

Finally, manually deploying and maintaining complex
container-based micro-services and computation tasks are
not feasible at scale, thus, it is a further challenge to use
the application-level cloud orchestrator MiCADO (Kiss
et al. [2019]), and release the final version after testing
and benchmarking as a reference architecture (Nagy et al.
[2021]).

3.3 Demonstration of the control operation

Finally, the effectiveness of the controlled system on the
examples of roundabout scenarios with virtual and real
four-wheeled vehicles, see Figure 6. The goals of the
examples are to show (i) the impact of Q on the result
of the learning and (ii) the safe motion of the vehicle, even
if the cloud connection has been lost.

In the first scenario the vehicle enters into roundabout
at the entrance on the bottom (Figure 6(a),(b)), takes a
round and exits also on the bottom of the roundabout.
During its route three virtual vehicles also move in the
roundabout. In this scenario the RL-based control is
designed to have high priority on speed maximization, i.e.,
Q = 7.5 is selected. Moreover, two cases in this scenario

(a) With cloud connection (Scen.
1)

(b) W/o cloud connection (Scen.
1)

(c) With cloud connection (Scen.
2)

(d) W/o cloud connection (Scen.
2)

Fig. 6. Visualization of the scenarios
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Fig. 7. Results on Scenario 1

Figure 6(a),(b) show the moment when the vehicle de-
cides to enter into the roundabout. In the case of cloud
connection (Figure 6(a)) the vehicle earlier enters into the
roundabout, as in the case without cloud connection (Fig-
ure 6(b)). Its reason is that the RL-based control facilitates
the increase of speed (Figure 7(a)), but if the connection
has been lost, uL = 0 during the scenario (Figure 7(b)). It
results in difference in the speed profile, see Figure 7(c).
Distances between the vehicle and the actual conflict point
in each scenario are found in Figure 7(d). It illustrates that
the cloud level control facilitates the vehicle to move closer
to the actual closer vehicle, but the ssafe = 1m in both
cases is kept. It is achieved through the modification of uL

(see e.g. Figure 7(a)) to guarantee constraints on collision
avoidance. Thus, the safe motion of the vehicle in both
cases is guaranteed.
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Fig. 8. Results on Scenario 2

In the second scenario the vehicle inters into the same
entrance, but exits on the second after it (Figure 6(c),(d)).
The RL-based controller with Q = 12 is trained, which
means that it is requested to reduce the difference between
u and uL. Figure 8(a) illustrates that through the learning
process it is successfully achieved. It results in that if the
connection to the cloud has been lost, the differences of the
cases in u is small. Thus, the speed profile (Figure 8(c)) of
both cases are close to each other. It results in almost the
similar motion, see Figure 8(d). Thus, through appropriate
selection of Q it can be achieved that the motion of the
vehicle in the connected and unconnected cases are close
to each other. It can have benefits under real operation
circumstances. For example, if the connection for a short
period during the operation of the vehicle has been lost,
it can have reduced impact on the logistic or transport
process.

4. CONCLUSIONS

The paper has proposed a hierarchical motion control for
vehicles with cloud-aided learning feature. The method us-
ing four-wheeled indoor vehicle and using communication
with cloud is implemented. The operation of the control
under various scenarios is demonstrated. As a contribu-
tion, the proposed control strategy is able to guarantee
safe motion of the vehicle, i.e., collision avoidance, even if
the connection with the cloud is lost. Moreover, the RL-
based control on the cloud level is able to increase the
speed of the vehicles.

A future challenge of the research is to provide motion
control methods for the coordination of high number of
vehicles. In the framework of the hierarchical control the
coordination on the cloud level can be effectively achieved.
Its advantage is that the high computation capability of
the cloud is used for the coordination, and thus, increasing
computation requirements against the vehicle are not
posed.
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