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Abstract: Knock behaves a cyclically random process but also excites deterministic knock resonant 
behavior within any given cycle. While individual instances of the resonant response are readily acquired, 
the stochastic / cyclic variations of such signals (which also reflect the underlying knock process) are harder 
to quantify. In this work, a more complete model of this process is developed, capturing both the cyclic 
variability in the knock response as well as its functional resonant behavior. A recently developed alignment 
process is first used to evaluate the characteristic ensemble mean knock ‘signature’ of the data. A functional 
linearization about this ensemble mean is then used to decompose and model cyclic variations in terms of 
small variations in amplitude, frequency and phasing of the signal. The model is fitted to the data, 
encapsulating the stochastic variation of the knock signal within the stochastic variation of the estimated 
parameters. A residual analysis used to assess the goodness of fit as a function of crank angle, and the 
distribution and covariance of the estimated parameters is discussed. 
Keywords: Spark Ignition; Cylinder Pressure; Stochastic Modeling; Knock. 

1. INTRODUCTION 

Abnormal ‘knocking’ combustion is well known to generate 
impulsive and damaging increases in temperature and pressure 
within the cylinder, together with associated acoustic 
resonances in the combustion chamber, (Draper, 1938; 
Heywood, 1988). Detection and quantification of these 
resonances is one of the most commonly used methods to 
obtain a scalar knock intensity feedback signal for knock 
control purposes, (Lee, Hwang, Lim, Jeon, & Cho, 1998; Millo 
& Ferraro, 1998; Naber, Blough, Frankowski, Goble, & 
Szpytman, 2006; Shahlari & Ghandhi, 2012). The resonant 
frequencies, and their dependence on gas temperature, are 
readily predicted from theory, (Draper, 1938; Scholl, Davis, 
Russ, & Barash, 1998), but the precise time history of knock 
onset, growth, and decay is harder to predict or simulate based 
purely on the underlying physics of the process, (Brecq & Le 
Corre, 2005; Di Gaeta, Giglio, Police, & Rispoli, 2013; Pan, 
Shu, & Wei, 2014). Furthermore, knock is widely recognized 
as approximating a cyclically independent random process, 
(Jill. M. Spelina, Peyton Jones, & Frey, 2014), and the 
resultant knock signals therefore vary significantly from cycle 
to cycle, even under nominally steady state conditions. For 
empirically based studies, this makes it hard to characterize or 
quantify observed knock waveforms in any rigorous / 
repeatable way. Typical studies illustrate single instances of 
knocking or non-knocking cycles to highlight specific knock-
related features, but these instances may not be generalizable. 
A statistical approach may provide a more reliable 
quantification of the process, capturing both the resonant 
characteristics of the signal as well as the cyclic / random 
characteristics of the knock process itself. 
 
Recent work has therefore aimed to model the stochastic 
distribution from which individual knock instances are drawn, 
(J. C. Peyton Jones & Shayestehmanesh, 2021). These 

distributions are stationary with respect to cycle number 
(under steady state conditions) but vary as a function of time / 
crank angle. However, random phasing of knock onset from 
one cycle to the next also means that the crank-angle 
dependent properties are not naturally aligned with one 
another. Simple averaging across cycles, for example, 
therefore causes the resonant characteristics that are visible in 
individual traces, to vanish (along with other random noise) in 
the resultant ensemble mean. In reference (J. Peyton Jones & 
Patel, 2021), the data were therefore phase-aligned using a 
cross-correlation technique relative to a strongly knocking 
reference cycle, and the statistical properties of the resonant 
knock process could then be seen more clearly. In particular, 
it was shown that the data possessed a clear ensemble mean 
resonant knock ‘signature’, and that the shape of the 
distribution at any given crank angle could be modeled 
parametrically as a mixture of two Gaussian processes 
representing the knocking and non-knocking populations that 
are present within the dataset. However, estimates were always 
performed independently at each crank angle, and no attempt 
was made to exploit the clear resonant functional form that is 
evident in the results. 
 
In this work, we therefore take this line of investigation one 
step further by assuming that the random cyclic variations 
observed at different crank angles within the same cycle are 
not independent from one another, but rather result from some 
perturbation of the deterministic function defined by the knock 
signature. These perturbations, which are assumed to be 
characterized by small gain and phase shifts, provide a much 
more concise yet complete description of the data since the 
stochastic properties of cyclic variation are now captured by 
the covariance of the perturbation parameters. Such a model 
then offers possibilities for simulating stochastically similar 
data sets, or for deriving analytically the results expected from 
applying different knock detection methods to the data. The 
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paper is organized as follows: Section 2 briefly reviews the 
data alignment process, the resulting set of ensemble mean 
signatures that are obtained for different spark timings relative 
to BorderLine (BL) knock conditions. A cyclic model, based 
on perturbation about this set of mean signatures is then 
proposed and fitted to the data in Section 3. The extent to 
which this model accurately characterizes the data is assessed 
and the distribution and covariance of perturbation model 
parameters is investigated. Finally, brief conclusions are given 
in Section 4. 

2. DATA, AND DATA ALIGNMENT 

Data for this study was recorded from a Ford V8 gasoline 
engine connected to a low inertia dynamometer on an engine 
testbed. The engine was operated at 1000 rpm, Wide Open 
Throttle (WOT) using 91 Research Octane Number (RON) 
fuel, and no Exhaust Gas Recirculation (EGR). A standard 
powertrain control module was used to regulate all engine 
variables apart from the spark timing which was stepped at 
intervals of 1 from BL-3 to BL+2 where BL denotes the 
angle of BorderLine audible knock. At each spark condition 
1002 cycles of data were recorded for analysis. Each cylinder 
was equipped with a flush-mounted cylinder pressure sensor, 
so this data included raw pressure signals from all eight 
cylinders, though the analysis in this work is limited to 
cylinder #1. An encoder was used to sample data every 1/10th 
of a crank angle degree resulting in a 60 kHz sample rate when 
operating at 1000 rpm. 
 
To focus on the higher frequency knock components, cylinder 
pressure measurements are typically bandpass filtered about 
the knock resonant frequency before further processing. In this 
work, however, the ensemble mean pressure was first 
subtracted from each cyclic pressure waveform before 
applying a broad 4.5 - 15 kHz bandpass filter to the remaining 
cyclic pressure fluctuation signal. This was found to be more 
effective at removing the low-frequency deterministic 
components of the waveform. The data was also forward and 
reverse filtered through the bandpass filter in order to preserve 
any phase-related effects.  
 
Typical examples of the resultant filtered pressure fluctuation 
traces, (Fig. 1), show the resonant ringing associated with 
knock, as well as significant variations in the response from 
one cycle to the next. Previous analyses have shown that these 
variations are cyclically uncorrelated and vary as a stationary 
random process with respect to cycle number, (J. C. Peyton 
Jones & Shayestehmanesh, 2021). More generally, these 
instances belong to a distribution of all possible knock signals 
that are generated at this operating condition. This work aims 
to capture the statistical properties and characteristics of this 
distribution and thereby to describe the process more 
completely and repeatably than is possible using individual / 
specific instances. 
 
As noted in the introduction, however, the crank-angle 
dependent properties of these distributions are confounded by 
random variations in the angle of knock onset. Simply 
computing the ensemble mean across cycles, as one might 
when analyzing cylinder pressure, gives a zero mean result as 

seen in Fig. 2 for the BL+2 dataset (red trace). Even though 
deterministic resonant characteristics are visible in all of the 
individual traces of Fig. 1, their random phasing with respect 
to one another means that they average out rather than combine 
constructively when computing the ensemble mean.  
 
It is therefore first necessary to align the data relative to some 
reference cycle, chosen in this case to be from the 98th 
percentile of the maximum knock oscillation amplitude in the 
Bl+2 dataset, (J. Peyton Jones & Patel, 2021). The angular 
delay of knock onset relative to the reference cycle can be 
estimated from the angle at which the cross-correlation 
between each individual cycle and the reference cycle, is 
maximized. The data can then be shifted to ‘correct’ for cyclic 
differences in knock onset, and re-evaluating the ensemble 
mean pressure fluctuation then gives the ‘aligned’ knock 
resonant response also shown in Fig. 2 (blue trace). This is a 
more meaningful and repeatable result than the individual 
traces of Fig. 1, because it represents the statistically expected 
knock ‘signature’ for this dataset. Unlike frequency domain 
power spectral analyses, it also preserves the time-varying 
aspects of knock onset, growth and decay, including the slight 
decrease in resonant frequency with time that is visible as the 
gas expands and cools. Also note that cyclic noise variations 
are averaged out, and the response is largely noise-free, despite 
the fact that no frequency-selective filters have been applied. 
 
Although the ensemble mean response offers a useful way to 
observe and quantify empirically recorded knock data, it still 
does not fully characterize the distribution of knock pressure 
signals as they vary from one cycle to the next. More 
information about the shape of this distribution can be seen by 
plotting the third order moment or skewness as shown in Fig. 
3. Prior to alignment, the dataset is heavily skewed around 
knock onset since some cycles are already knocking, while 
others are not, but thereafter the skewness is near zero with no 
consistent pattern visible in the data. After alignment, 
however, inspection Fig. 3 clearly shows that the skewness 
oscillates in synchronicity with the ensemble mean trace, (Fig. 
2), being most positively skewed at the maxima of the knock 
signature, zero-skewed at its zero crossings, and most 
negatively skewed at its minima.  
 
It should be noted that each point on the waveforms shown in 
Figs. 2, 3 is estimated independently from its immediate 
neighbors. The fact that the results yield such smooth results 
is strong evidence that not only is the mean response 
functionally determined by knock resonance, but the 
characteristics of the entire distribution vary deterministically 
/ functionally with crank angle. The objective of this work is 
to develop a more concise and complete stochastic model for 
cyclic variations of knock signals which exploits these 
functional dependencies. (The slight amplitude modulation 
visible in both aligned and non-aligned data for angles greater 
than 50 ATDC is likely due to numerical effects when 
computing the skewness of variations that are by this time very 
small). 
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3. FUNCTIONAL MODELING OF CYCLIC VARIATIONS 

Prior work modeling the distributions underlying Figs. 2,3, has 
ignored their evident functional characteristics, and instead 
modeled the distribution at each crank angle separately. It was 
shown, for example, that the distribution at any given crank 
angle can be successfully modeled as a sum of two Gaussian 
distributions representing the knocking and non-knocking 
populations respectively that are present in the dataset, (J. 
Peyton Jones & Patel, 2021). The probability density function 
function f () of the observed filtered pressure fluctuations 
Pf(i) at crank angle i can then be expressed as a function of 
Gaussian model parameters i1, i2, i1, i2, pertaining at angle 
i. This gives,  
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where the quantities p and (1-p) denote the fraction of the total 
population that belong to the knocking and non-knocking 
populations respectively, and where f (x |,) denotes a single-
Gaussian distribution, used to describe each of these 
populations in terms of its own mean  and variance, 2.  
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This model has proved to be very effective. Not only was it 
able to accommodate the oscillation between left- and right-
skewed distributions that are observed in Fig. 3, but it enabled 
the ensemble mean response shown in Fig. 2 to be decomposed 
into its constituent parts representing the knocking and non-
knocking signature of the engine at the given operating 
condition. The estimated variances associated with these 
populations (not shown for reasons of space) also give insight 
into the stability of each type of combustion, and the estimated 
knock fraction, p, provides a useful measure of the proportion 
of abnormal combustion cycles in the dataset. 
 
Despite these benefits, however, the model represented by (1), 
(2), is not very parsimonious since it requires 5 parameters for 
each point of the waveforms shown in Figs. 1-3. With a 
sampling rate of 1/10th of a crank angle degree, and a region of 
interest that spans about 50, it requires around 2500 
parameters to fully model the distributions. Even given these 
parameters, the model is incomplete because it is not possible 
to use them to generate a sample instance of the observed 
waveform: One can certainly generate sample instances of the 
pressure fluctuation at a given crank angle i but there is no 
reason why the instances obtained at neighboring crank angles 
should exhibit any smooth / resonant functional form.  
 
An alternative is to assume that the filtered pressure 
fluctuations at cycle number j and operating condition BL+k 
can be described as some functional expression Pj,k(i, ), 
parameterized by a set of variables, . In this case we assume 
that Pj,k(i, ) can be further expanded as some oscillatory 
function fk(j,k ti + j,k) scaled by an amplitude Aj,k, giving, 
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The pressure fluctuations at each cycle j and operating 
condition BL+k therefore all share the same functional form, 
but may oscillate at a slightly different frequency j,k, and 
(despite the alignment process) be slightly shifted by a phase 
j,k, as well as having a different overall magnitude Aj,k. 
Together, these variables define the set of parameters, . The 

 
Fig. 1. Typical knock signal waveforms obtained as filtered cylinder 
pressure fluctuations Pf () relative to the ensemble mean pressure. 

 
Fig. 2: Ensemble mean of knock signal waveforms, taken across 
cycles, before and after alignment. 

 
Fig. 3: Skewness of distribution of knock signal waveforms, taken 
across cycles after alignment. 
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ensemble mean knock signature can also be described in the 
same way, using an overbar to denote this special case, 
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If cyclic variations about the ensemble mean pressure trace are 
relatively small, then they can be approximated by linearizing 
(3) with respect to each parameter in the model, 
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More specifically, this gives in this case, 
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The required derivatives are obtained from (3) as, 
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Substituting from (4), and using a prime to indicate 
differentiation with respect to , the final linearized expression 
is given by, 
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This expression is useful because it decomposes cyclic 
variations into small parametric variations in amplitude, 
frequency and phase that are applied to the known ensemble 
mean response and its derivative with respect to crank angle. 
Given multiple observations over an angular region of interest, 
[1,…,n], (8) can be written in matrix form as, 

 
,

ˆ
j k

 Φ λΔP    (9) 

where the ith element of the pressure fluctuation time history 
vector Pj,k is Pj,k(i) and where the regressors, , and 
parameter vector, , are defined as, 
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The unknown cyclic parameter variations, Aj,k, j,k, j,k, 
(which represent the variations in amplitude, frequency and 
phase of the oscillation (3), relative to their ensemble mean 
values), are then readily estimated using least squares with the 

ensemble knock signature and its derivative as regressors and 
repeating the process for each cycle, j, in the specified dataset 
BL+k. A plot of the resulting fit for the five example cycles 
considered in Fig. 1, is shown in Fig. 4, and the corresponding 
residuals are shown in Fig. 5. Despite the substantial cyclic 
variability evident in Fig. 1, the model is reasonably effective 
at characterizing each trace, and the magnitude of the residuals 

 
     Fig. 4. Original and fitted knock signal waveforms. 

 
  Fig. 5: Unmodelled residuals after model fitting. 

 
Fig. 6: Variance of the residuals and of the original knock signal 
waveforms, taken across cycles. 
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is relatively small. Some discrepancies can be seen in the high 
intensity region immediately following knock onset, but the 
resonant decay is captured very closely.  
 
A more quantitative assessment of the model fit and its 
dependence on crank angle can be obtained by plotting the 
variance of the residuals taken across cycles, as shown in Fig. 
6. Also shown in the figure, for comparison is the variance of 
the original knock signals before the model was fitted. The 
area under these figures corresponds to the overall mean 
squared error of the unmodelled component. Overall, the 
model is seen to significantly reduce the mean squared error to 
23% of its original value. As noted above, the fit is best in the 
resonant decay region after about 25 ATDC, with larger 
errors in the region immediately following knock onset. 
Interestingly, the magnitude of the residuals in this region 
seems to oscillate at some lower frequency despite the fact that 
low frequency content was removed during the initial filtering 
of the cylinder pressure signal. It is surmised that maybe two 
closely spaced knock frequencies may be intermodulating to 
produce a small beat frequency effect. Indeed, some evidence 
of this is visible in the time history traces of Fig. 1. 
 
Generally, however, the results suggest that the ensemble 
mean knock waveform, together with linearized model, (8), 
successfully capture both the deterministic and stochastic 
aspects of the knock process. Indeed, the stochastic variations 
are now encapsulated in the cyclically varying values of the 
estimated parameters and the distribution of these variables 
(shown in Figs. 7,8,9) therefore reflects the cyclic distribution 
of knock waveforms.  
 
The distribution of , shown in Fig. 9, appears reasonably 
Gaussian. The standard deviation is 0.043 rad or 2.46, 
suggesting that most cycles have a relatively small phase offset 
of less than 5. The distribution of  is also reasonably 
symmetric, but with notably thicker tails than one would 
expect for a Gaussian distribution. The standard deviation is 
6.0 Hz, and most cycles fall within 12 Hz of the mean. Since 
the dominant resonant frequency in the ensemble mean trace 
(Fig. 2 blue trace) is 6.7 kHz, this represents a 0.18% 
variation relative to this reference.  
 
In contrast to Figs. 8, 9, the distribution of A, shown in Fig. 
7 is distinctly non-Gaussian, and seems more similar to a log-
normal distribution. Indeed, since the value (1+ A) scales the 
magnitude of the knock waveform, it is perhaps not surprising 
that it shows a similar distribution to scalar knock metrics such 
as MAPO which are often assumed to be log-normally 
distributed, (Naber et al., 2006; J. M. Spelina, Peyton Jones, & 
Frey, 2013). Unlike a true log-normal distribution, however, 
the left-most tail of the distribution in Fig. 7 shows that a small 
number of cycles are scaled by a small, but negative, value. 
This is likely caused by very low-amplitude / non-knocking 
waveforms in the dataset which are hard to align or fit with any 
certainty. 
 
Of course, the marginal distributions shown in Figs. 7,8,9 are 
not necessarily independent of one another. This 
interdependence is captured by the parameter covariance 

matrix cov(j) that is automatically computed during least 
squares estimation. The result of averaging this covariance 
matrix across all cycles for the BL+2 dataset gives,         
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     Fig. 7. Distribution of the estimated parameter, Aj,2 

 
  Fig. 8. Distribution of the estimated parameter, ωj,2 

 
Fig. 9. Distribution of the estimated parameter, ϕj,2 
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The elements on the leading diagonal represent the variance of 
each estimated parameter, as already discussed above. 
Normalizing by these variances gives the corresponding 
correlation matrix, 
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and the off-diagonal elements then show the correlation of one 
parameter with another. Inspection of (12) for example shows 
that positive variations in amplitude are weakly correlated with 
positive variations in frequency, suggesting that higher 
intensity cycles are slightly associated with higher 
temperatures and frequency as one might expect from the 
physics of the process.  Both amplitude and frequency are also 
negatively correlated with phase, suggesting that such higher 
intensity cycles also tend to occur slightly earlier in the cycle. 

4. CONCLUSIONS 

Knock signals display both deterministic (resonant) and 
stochastic (cyclic) characteristics which together reflect the 
underlying knock process. This work has shown that both 
these aspects can be modeled in terms of small variations in 
amplitude, frequency and phasing of the aligned ensemble 
mean knock resonant waveform. By fitting the model to the 
data the stochastic variations of entire knock waveforms are 
encapsulated very concisely in the variation of the estimated 
parameters – or more specifically in their distribution and 
covariance. More work is required to explore how stochastic 
knock behavior, as now characterized by this model, varies 
with spark advance and engine operating condition. In future 
work, it is also hoped to use the model to simulate knocking 
waveforms whose statistical properties match those of the 
original data from which the model was derived. Finally, it is 
hoped that the improved / stochastic understanding of knock 
signal waveforms may provide a more informed basis for 
developing improved knock detection algorithms. 
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