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Abstract: Avoidance maneuvers at normal driving speed or higher are demanding driving situations that
force the vehicle to the limit of tire–road friction in critical situations. To study and develop control for
these situations, dynamic optimization has been in growing use in research. One idea to handle such
optimization computations effectively is to divide the total maneuver into a sequence of sub-maneuvers
and to associate a segmented optimization problem to each sub-maneuver. Here, the alternating augmented
Lagrangian method is adopted, which like many other optimization methods benefits strongly from a good
initialization, and to that purpose a method with motion candidates is proposed to get an initially feasible
motion. The two main contributions are, firstly, the method for computing an initially feasible motion that
is found to use obstacle positions and progress of vehicle variables to its advantage, and secondly, the
integration with a subsequent step with segmented optimization showing clear improvements in paths and
trajectories. Overall, the combined method is able to handle driving scenarios at demanding speeds.

1. INTRODUCTION

Motion planning is generally a challenging task with no univer-
sal solution suited for all applications, and various methods
have been proposed to address different planning problems
(LaValle, 2006; Paden et al., 2016). One class of approaches uses
optimization-based methods (Limebeer and Rao, 2015), which
are well suited for dynamic models used in autonomous-driving
applications. Such methods compute an optimal maneuver with
respect to a criterion, and straightforwardly allow incorporation
of constraints in the formulation and the subsequent solution.
The optimization is in this paper done with the view that a
complete maneuver is a sequence of sub-maneuvers, which is
inspired by the use of motion primitives in motion-planning
problems (Pivtoraiko and Kelly, 2011; Bergman et al., 2019).
Such planning has successfully been applied to situations where
a kinematic model is feasible to use. However, for a critical
maneuver at normal or high driving speeds, it is necessary to
consider the dynamics of the vehicle, perhaps even at the limit
of friction. Because of such dynamics, there is a combinatorial
explosion of possible motions compared to the kinematic case,
and it is challenging to precompute and store sufficiently many
primitives. In this paper, another line of thought is used for
dynamics-based motion planning. It leads to: computation of
a scenario division based on obstacle positions, computation
of motion candidates and an initially feasible motion, scenario
segmentation based on extremum values of vehicle motion, and
finally segmented optimization.

1.1 Previous Research

This paper presents and investigates a motion-planning ap-
proach that uses segmentation and the alternating augmented
⋆ This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

Lagrangian method (Galvan et al., 2019), and it generalizes the
previously proposed segment-based optimal motion-planning ap-
proach in (Anistratov et al., 2020), which considered avoidance
of one single obstacle on the road by a double lane-change
maneuver, whereas one extension in this paper is to avoid
several consecutive obstacles, and this of course causes increased
interaction between sub-maneuvers. The main example used
is a scenario with two consecutive double lane changes with
dimensions inspired by the standard ISO 3888-2:2011 (2011).

Methods for motion planning using search and state-space
discretization, e.g., lattice-based trajectory planners (Likhachev
and Ferguson, 2009; Pivtoraiko and Kelly, 2011; Bergman et al.,
2019), find an approximate solution where the quality is depen-
dent on the resolution of the state-space discretization, which in
turn is limited by the size and the time for pre-computation of the
state lattice and motion primitives. This often restricts the state-
space discretization methods to kinematic models with a limited
number of discretization points for each state. Nevertheless, for
special classes of actions, motion primitives have been used for
dynamic models as well (Frazzoli et al., 2002; Gray et al., 2012;
Bergman et al., 2020b; Ajanovic et al., 2020).

To improve computational performance and solution quality,
two main ideas have been adopted, segmentation and two-step
calculations. When solving an optimization problem, decompo-
sition techniques have been used (see, e.g., (Boyd et al., 2011)),
even down to each control interval (O’Donoghue et al., 2013), or
using a linearized problem at each step (Sindhwani et al., 2017).
Optimization convergence often benefits largely from a good
initialization, so the other main idea is the two-step approach
where the first step finds an initialization and the second step is
the optimization, see (Diehl et al., 2005; Svensson et al., 2019;
Bergman et al., 2020a; Ljungqvist et al., 2020; Bergman et al.,
2021) for some examples.
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Fig. 1. Overall layout of the motion planner and its interaction
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Fig. 2. Description of vehicle motion using road coordinates
adopted from (Limebeer and Rao, 2015).

1.2 Contributions and Paper Outline

This paper aims for solving the complete optimal control
problem achieving both path and trajectory planning even for
high performance, at-the-limit maneuvers. This is a challenging
computational task, and to handle it a number of new ideas
are contributed. One is to integrate and further develop the
segmentation technique in the optimization problem itself from
(Anistratov et al., 2020) into a complete motion planner. Another
important new part is the first step of finding an initially feasible
motion (IFM). These main ideas and contributions of this
paper are captured in Figures 1, 3, and 4. Figure 1 gives a
high-level overview of the whole motion-planning approach.
The motion-planning part consists of two main blocks, and
it computes inputs to the controller by utilizing situational
awareness about the scenario. The Initially Feasible Motion
Planner (IFM Planner), see also Figure 3, is responsible for
generating an initially feasible motion, and it is detailed in
Section 3. The Segment-Based Optimal Motion Planner (SOM
Planner), see also Figure 4, outputs a segment-based optimal
motion for the maneuver by using optimization and segmentation
techniques. The SOM Planner takes updated vehicle variables
into account to compute updated motion plans. Notice that
Figure 1 is one integrated computational scheme. Thus, it is
not so that a path is planned for a path tracker to follow, but
rather that a complete motion is computed in two main steps.
The details of this planner are covered in Section 4. Parameters
and implementation are treated in Section 5, and the results are
presented in Section 6. Section 7 gives the conclusions.

2. MODELING

The single-track model is here describing the vehicle dynamics
using road coordinates (Limebeer and Rao, 2015; Anistratov
et al., 2020). The derivatives of the steering angle and the
longitudinal tire forces are considered as inputs, to allow having
constraints on these variables in the optimization formulation.
The vehicle position is characterized by the distance s traveled
along the center of the road and position n(s) along the vector
n(s) perpendicular to the track tangent t(s) (see Figure 2).
Using the curvature C(s) of the road (i.e., the inverse of R
in Figure 2), the transformation factor to change the independent
variable in the model from time t to distance s is given by
(Limebeer and Rao, 2015)

Sf =

(
ds

dt

)−1

=
1− nC(s)

vx cos(ψ)− vy sin(ψ)
, (1)

where vx, vy are the longitudinal and lateral velocities at the
center of gravity, respectively, and ψ is the vehicle orientation in
the road frame. Using the transformation factor Sf , the model
equations are
mv′x = (Fx,f cos(δ) + Fx,r − Fy,f sin(δ) +mvyr)Sf , (2a)
mv′y = (Fy,f cos(δ) + Fy,r + Fx,f sin(δ)−mvxr)Sf , (2b)
IZr

′ = (lfFy,f cos(δ)− lrFy,r + lfFx,f sin(δ))Sf , (2c)
ψ′ = rSf − C, n′ = (vx sin(ψ) + vy cos(ψ))Sf , (2d)

F ′
x,f = uFx,f

Sf , F
′
x,r = uFx,rSf , δ

′ = uδSf , (2e)

where ( )′ denotes derivative with respect to s, and r is the
yaw rate, δ is the steering angle, Fx,i, Fy,i, i ∈ {f, r}, are the
longitudinal and lateral forces, respectively, for the front and rear
wheels, m is the vehicle mass, IZ is the vehicle chassis inertia
along the yaw direction, and lf , lr are lengths to the center of
gravity from the front and rear wheels, respectively. The state
vector x̄ and the input vector ū are
x̄ = (vx, vy, r, ψ, n, Fx,f , Fx,r, δ), ū = (uFx,f

, uFx,r
, uδ).

The tire forces are described using a tire model from (Pacejka,
2006). The lateral forces are given by

Fy,i = −Cα,iαi, i ∈ {f, r}, (3)
where αi is the slip angle and Cα,i is the lateral tire stiffness. To
capture saturation of the tire behavior in the formulation of the
motion planner, the combined longitudinal and lateral forces are
constrained by the friction ellipse (11c)–(11d).

3. IFM PLANNER

The upper block in the motion-planning architecture (IFM
Planner in Figure 1) is considered first. This block is in turn
divided into four blocks, see Figure 3, and the overall purpose
of the block is to compute an initially feasible motion for the
vehicle in a given scenario.

3.1 Scenario Division

A scenario is here defined between the coordinates ss and sf ,
and it includes information about L box-shaped obstacles along
the road in terms of their center sl,c and length sl,w along the s
coordinate, where l ∈ {1, . . . , L} is used for indexing obstacles
throughout this section. In the Scenario Division block, a simple
strategy to divide the scenario is considered; the choice of s-
points to use for the division is determined using the obstacle
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Fig. 3. Layout of the IFM Planner block (see Figure 1 for the
overall layout of the motion planner).

positions and lengths. The total vector s̄div of s-coordinates to
use for the scenario division is the following

s̄div =

(
ss, s1,c −

1

4
s1,w, . . . , sL,c −

1

4
sL,w, sf

)
, (4)

which means that each motion segment leads the vehicle to reach
the s-coordinate corresponding to 1/4 of the length of each
obstacle. Such a choice of s̄div may imply that the computed
motion candidates have different length in s, depending on the
obstacle placement, but this is straightforward to handle in the
subsequent blocks.

A summary of the steps of the Scenario Division block is:

(1) Define ss and sf , and set sl,c and sl,w of the L obstacles.
(2) Compute s̄div in (4), which in total contains L+ 2 points.

3.2 Computation of Motion Candidates

After the scenario has been divided according to the previous
subsection, the vector s̄div is known. The scenario in addition
defines the road boundaries nmin and nmax and the upper nl,u
and lower nl,d boundaries of the n-coordinate for the L box-
shaped obstacles. To the purpose of presentation, the road space
occupied by the obstacles is denoted as Oobs, and the obstacle-
free space is Ofree. The nominal longitudinal velocity is vx,in.

The vehicle-dynamics model (2) with included relation for the
lateral forces (3) is discretized using the Runge-Kutta method
RK4 (Ascher and Petzold, 1998) and a fixed step size ∆s as
x̄i+1 = F(x̄i, ūi).

In the Computation of Motion Candidates block, there is a need
to determine the coordinates for the motion candidates to aim
for along the n-axis. In total H different n-coordinates indexed
with h are used when computing motion candidates, and these
are located on a grid with a spacing of ∆n according to

nh = nmin + h∆n, h ∈ {0, . . . ,H}. (5)
Using this approach, which is a special case of state-space
sampling (Howard et al., 2008), and a trajectory rollout method
(Svensson et al., 2019), motion candidates are generated in
simulation using a controller based on an infinite-horizon linear-
quadratic regulator (LQR) (Anderson and Moore, 1989) for
the vehicle model. The control gain matrix F is computed
once for the scenario for a quadratic criterion minimizing the
weighted sum of the deviation of the state trajectory from the

input trajectory x̄iin and the use of actuation with weighting
matrices Q̆ and R̆, respectively. The gain matrix is obtained by
solving the discrete-time algebraic Riccati equation (Anderson
and Moore, 1989).

As feedback from the Selection of Motion Candidates block
(described in Section 3.3), the index hsel,l−1 of the previously se-
lected motion candidate is known. The motion candidate to reach
obstacle l at the position nh along the n-coordinate starts from
the end state of the previously selected (hsel,l−1) motion candi-
date (or the start of the scenario x̄0 to reach the first obstacle).
The motion candidates are obtained by iteratively computing

x̄i+1
MC,l,h = F(x̄iMC,l,h, ū

i
MC,l,h), i ∈ {1, . . . , Nl}, (6a)

ūiMC,l,h = −F · (x̄iMC,l,h − x̄iin,l,h), (6b)
where, for each obstacle l, the number of discretization points is
Nl, the initial state x̄1MC,l,h = x̄Nl+1

MC,l−1,hsel,l−1
, and x̄iin,l,h is the

input trajectory for that motion candidate to the LQR. The input
longitudinal-velocity component of x̄iin,l,h is set to the nominal
longitudinal velocity for all motion candidates in the scenario.
The input path to the LQR is in the simulation defined using a
fifth-order polynomial. Adopting the path polynomial from (He
et al., 2018), the input lateral coordinate nin,l,h for each motion
candidate is then formulated in a continuous form as
nin,l,h(s) = ns,l + (nh − ns,l)

(
10s̃3 − 15s̃4 + 6s̃5

)
, (7a)

s̃ =
s− sdiv,l−1

sdiv,l − sdiv,l−1
, (7b)

where ns,l is the n-coordinate at the beginning of the current
motion candidate, which is equal to the final n-coordinate of
the previously selected motion candidate, or the component n0
of x̄0 for the motion candidates computed to reach the first
obstacle. Such a construction of the input path means that the
computation of the next motion candidate does not start at
the actual n-coordinate of the previous motion candidate, but
rather at the final n-coordinate of the input path for the previous
motion candidate. It also makes the complete input path for the
maneuver to be continuous. The input orientation ψin,l,h(s) to
the LQR is for each motion candidate obtained from computing
the first-order derivative of nin,l,h(s) in (7) with respect to s and
then combining it with (1) and (2d) under the approximations
vy ≈ 0 and nC(s) ≈ 0, which gives ψin,l,h(s) =

arctan

(
nh − ns,l

sdiv,l − sdiv,l−1

(
30s̃2 − 60s̃3 + 30s̃4

))
. (8)

To save computational time, motion candidates are not computed
for all values of h. A simple collision check is first performed to
make sure that the end-point of an input path is in Ofree. The top
plot in Figure 5 shows an example scenario, where the dotted
lines are the input paths nin for the computed motion candidates.

The following steps define the computational procedure for the
Computation of Motion Candidates block:

(1) Define nmin, nmax, vx,in, and nl,u, nl,d for the L obstacles.
(2) Compute the grid points nh in (5).
(3) Compute the LQR gain matrix F for the complete scenario.
(4) From Selection of Motion Candidates, get hsel,l−1.
(5) Determine the vector h̄l,comp with all h fulfilling the

collision condition h ∈ Ofree.
(6) For h in h̄l,comp, compute x̄iin,l,h using vix,in,l,h, nin,l,h(s),

and ψin,l,h(s).
(7) For h in h̄l,comp, compute motion candidates as sequences

of
{
x̄iMC,l,h

}
and

{
ūiMC,l,h

}
according to the relations (6).
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3.3 Selection of Motion Candidates

In the Selection of Motion Candidates block, the complete
computed motion candidates are checked to be in Ofree and
not just the end-point of the input paths as in Section 3.2. For
each h in h̄l,comp, the n-coordinates in {x̄iMC,l,h} should be
in Ofree. The check could be extended to also verify actuation
utilization, but this is not further pursued here. If multiple motion
candidates are feasible, the motion candidate with the lowest
change in the n-coordinate between its start and end is selected.
If none of the motion candidates is feasible, the algorithm may
choose an infeasible motion candidate, and then the algorithm
relies on the ability of the SOM planner not only to improve the
planned trajectory with the respect to the criterion but also to
make it feasible with respect to the constraints.

The steps of the Selection of Motion Candidates block are:

(1) Compute h̄l,feasible with indices h from h̄l,comp fulfilling
the complete collision check

{
x̄iMC,l,h

}
∈ Ofree.

(2) Set hsel,l according to h from h̄l,feasible of the motion
candidate that has the lowest change nh − ns,l.

3.4 Combination of Motion Candidates

When all motion candidates are computed, the indices of the
selected motion candidates hsel,l for all L obstacles are known.
The corresponding sequences of states

{
x̄iMC,l,h

}
and inputs{

ūiMC,l,h

}
of L + 1 motion candidates are combined in the

Combination of Motion Candidates block into the initially
feasible motion given by{
x̄iIFM

}
, i ∈ {1, . . . , N + 1} and

{
ūiIFM

}
, i ∈ {1, . . . , N},

where N = −L +
∑L

l=1Nl and N + 1 is the total number
of discretization points. The used computational approach
ensures that the computed motion is feasible with respect to
the combined vehicle model (2).

4. SOM PLANNER

The second motion-planning block, the SOM Planner in Figure 1,
is in turn described by five blocks, see Figure 4.

4.1 Scenario Segmentation

The scenario is divided into a number of segments to allow
parallel computations at later stages of the planning. Note
that this division is done in a different way than in the IFM
Planner. The approach used in the SOM Planner builds on the
previous research in (Anistratov et al., 2018, 2020), namely
a segmentation from a vehicle-dynamics perspective. More
specifically, a vector s̄extrema with s-coordinates of extrema of
the vehicle orientation ψ and the yaw rate r is computed in the
Scenario Segmentation block. Information about these variables
is available from the initially feasible motion, which is an output
from the IFM Planner block (see Section 3). Segmentation points
are represented as a vector s̄seg, which includes the s-coordinates

s̄seg = (s0, sextrema,j , . . . , sf ), (9)
where the boundary points s0, sf and a selection of the
extremum points sextrema,j , j ∈ j̄select, are included. Different
selection approaches for the number of extremum points are
possible. One approach is based on selecting the points in such
a way that segments are approximately of the same size. The

Scenario segmentation
by vehicle variables
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of maneuver segments to update
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of maneuver segments in parallel
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of maneuver segments

Combination
of maneuver segments

s̄seg
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,
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ūi
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s

Repeat while driving jdrive

Segment-based optimal motion
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}
,
{
ūi
SOM

}

Fig. 4. Layout of the SOM Planner block (see Figure 1 for the
overall layout of the motion planner).

length of the vector s̄seg is M + 1, where M is the number of
segments, and the variable j is used for indexing.

The computations of the Scenario Segmentation block are:

(1) Find s̄extrema using the initially feasible motion
{
x̄iIFM

}
.

(2) Define the segmentation points s̄seg in (9).
(3) Set M to the number of segments.

4.2 Selection of Maneuver Segments to Update

By using the observation that the maneuver segments are
followed sequentially, the segment-based optimal motion is
updated in a receding-horizon fashion using the current position
of the vehicle in the Selection of Maneuver Segments to Update
block and provided to the Controller block. The main idea used
here is that before the vehicle reaches a particular maneuver
segment, it is possible to update that maneuver segment as well
as the following maneuver segments. Such a strategy allows
reducing the time before the vehicle is able to start following the
maneuver, at the expense of a potentially suboptimal motion at
the beginning of the maneuver. While driving through maneuver
segment jdrive, the maneuver segments selected for update are

j̄select = {jdrive + 1, . . . ,M}. (10)
Referring to Figure 4, this implies that the blocks Computation
of maneuver segments in parallel and Coordination of maneuver
segments are repeated several times before the end of the
maneuver segment jdrive is reached and j̄select is updated.

4.3 Computation of Maneuver Segments in Parallel

To provide a basis for the description of the Computation of
Maneuver Segments in Parallel block responsible for computing
maneuver segments in parallel, the optimal control problem
for the complete scenario is first formulated, and then it
is reformulated to allow parallel computations of maneuver
segments.

Optimal Control Problem To formulate the optimal control
problem for the complete scenario, functions penalizing driving
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closer than the distance nm to the road boundaries are formu-
lated for the left boundary nl and the right boundary nr as
pil = max(ni − nil + nm, 0), p

i
r = max(nir − ni + nm, 0),

for i ∈ {1, . . . , N + 1}. Then the optimal control problem with
N piecewise constant control inputs is formulated as

min.
x̄,ū

N+1∑
i=1

(
(cv(vx − vx,in)

2 + cn,b((p
i
l)

2 + (pir)
2)

+ cδ(δ
i)2

)
∆s+

N∑
i=1

(ūi)TRūi∆s (11a)

s. t. x̄1 = x̄0,
∣∣δi∣∣ ≤ δmax, ūmin ≤ ūi ≤ ūmax, (11b)

(F i
x,f )

2 + (ηF i
y,f )

2 ≤ (µmglr/(lf + lr))
2, (11c)

(F i
x,r)

2 + (ηF i
y,r)

2 ≤ (µmglf/(lf + lr))
2, (11d)

nil ≤ ni ≤ nir, x̄
i+1 = F(x̄i, ūi), (11e)

where i ∈ {1, . . . , N}, the constant matrix R and the constants
cv, cn,b, and cδ are weighting factors, the absolute value of the
steering angle is limited by δmax, the inputs are constrained by
ūmax and ūmin, and the forces for each tire are bounded by the
friction ellipse (Pacejka, 2006), where η is the ellipse parameter.

Separable Control Problem and Parallel Computations To
separate the optimal control problem (11) into maneuver seg-
ments for parallel computations, the procedure from (Anistratov
et al., 2020) is used, which in turn is built on the approach
in (Galvan et al., 2019). The problem (11) can compactly be
represented with a sum of the terms J (x̄i, ūi), i ∈ {1, . . . , N +
1}, for the objective function (11a) and with G(x̄i, ūi) ≤ 0
and x̄i+1 = F(x̄i, ūi), i ∈ {1, . . . , N}, for the constraints
(11b)–(11e). This problem is subsequently reformulated to allow
splitting it into M subproblems. This is achieved by dividing
the state variables x̄ and control inputs ū into the M maneuver
segments and by introducing additional equality constraints with
auxiliary variables ȳ to make the new problem to be equivalent
to (11). The new segmented state and control variables are
denoted as x̄j and ūj , consisting of pj + 1 and pj vectors,
respectively, representing pj steps in s. For compact notation, the
compositions of the new segmented vectors and the composition
of multipliers, to be used in the subsequently defined augmented
Lagrangian, are introduced as
X = {x̄1, . . . , x̄M}, U = {ū1, . . . , ūM}, (12a)

Y = {ȳ1, . . . , ȳM+1}, Λ = {λ01, λf1 , . . . , λ0M , λfM}. (12b)
The augmented Lagrangian corresponding to the j:th of the M
subproblems is given by

Lj,τ (x̄j , ūj , ȳj , ȳj+1, λ
0
j , λ

f
j ) = λ0j

(
x̄1j − ȳj

)
+
τ

2

∥∥x̄1j − ȳj
∥∥2

+ f0j J
(
x̄1j , ū

1
j

)
+

pj∑
i=2

J
(
x̄ij , ū

i
j

)
+ ffj J

(
x̄
pj+1
j , ū

pj+1
j

)
+ λfj

(
x̄
pj+1
j − ȳj+1

)
+
τ

2

∥∥∥x̄pj+1
j − yj+1

∥∥∥2 , (13)

where τ is a penalty parameter and the factors f0j and ffj are

introduced to consider that the state values x̄pj+1
j and x̄1j+1

correspond to the same traveled distance s along the center of
the road, i.e., f01 = ffM = 1 and 0.5 in all other cases. More
details about the augmented Lagrangian formulation can be
found in (Anistratov et al., 2020).

Given the current iterate
(
kX , kU , kY ,kΛ, kτ

)
, the compu-

tational steps are the following. For fixed kY , kΛ, and kτ ,

the values of k+1X and k+1U are obtained by finding their
components k+1x̄j , k+1ūj from solving subproblems for each
j ∈ j̄select, with i ∈ {1, . . . , pj}, as

min.
x̄j ,ūj

Lj,τ (x̄j , ūj ,
kȳj ,

kȳj+1,
kλ0j ,

kλfj ) (14a)

s. t. G(x̄ij , ūij) ≤ 0, x̄i+1
j = F(x̄ij , ū

i
j). (14b)

These subproblems are independent of each other and can thus
be solved in parallel on different computational units.

The steps of the Computation of Maneuver Segments in Parallel
block are:

(1) Setup M subproblems of (14), set kX , kU , and kY using
the initially feasible motion

{
x̄iIFM

}
and

{
ūiIFM

}
.

(2) Get k+1X and k+1U by solving (14) for j̄select.

4.4 Coordination of Maneuver Segments

For parallel computations of the maneuver segments, these
segments are coordinated in the Coordination of Maneuver
Segments block using the variables Y , Λ, and τ . For fixed k+1X ,
k+1U , kΛ, and kτ , the components of the new iterate k+1Y are
obtained by analytic expressions (derived in Anistratov et al.
(2020))

k+1y1 =
kλ01
kτ

+ k+1x01,
k+1yM+1 =

kλfM
kτ

+ k+1xfM , (15a)

k+1yj =

kλfj−1 +
kλj

0

2 · kτ +
k+1x

pj+1
j−1 + k+1x0j

2
, (15b)

where j ∈ {1, . . . ,M}. However, in this paper, the auxiliary
variables ȳj for the first maneuver segment j possible to update
are set equal to the state values at the end of the previous
maneuver segment x̄pj+1

j−1 . New multipliers k+1Λ and the penalty
parameter τ are updated as in (Galvan et al., 2019; Anistratov
et al., 2020).

The steps of the Coordination of Maneuver Segments block are:

(1) Compute k+1Y in (15).
(2) Compute k+1Λ and k+1τ .

4.5 Combination of Maneuver Segments

When the parallel computations and the coordination processes
are completed (e.g., the vehicle reaches the end of the maneuver
segment jdrive), the segment vectors in X and U are combined in
the Combination of Maneuver Segments block into the segment-
based optimal motion given by{
x̄iSOM

}
, i ∈ {1, . . . , N + 1} and

{
ūiSOM

}
, i ∈ {1, . . . , N},

which is passed to the Controller block in Figure 1.

5. PARAMETERS AND IMPLEMENTATION

In this section, the parameters used to define the model and the
optimal control problems are defined. Moreover, implementation
aspects are discussed.

5.1 Obstacles and Road Boundaries

Two consecutive double lane-changes are considered as the
scenario, where the dimensions for one double lane-change
are inspired by the ISO 3888-2 double lane-change test. One
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double lane-change setup is defined using three obstacles, and
for the second double lane-change setup, these three obstacles
are repeated, but shifted along the s-axis. The top subplot in
Figure 5 visualizes the setup, and the corresponding lateral road
limits along the n-axis in Figure 6 are

nl(s) =

{
0.7, s ∈ [0, 12] ∪ [49, 73] ∪ [110, 122]

3.5, otherwise
(17a)

nr(s) =

{
2.5, s ∈ [25.5, 36.5] ∪ [76.5, 97.5]

−0.7, otherwise
(17b)

5.2 Model and Problem Parameters

The vehicle model and tire parameters are chosen as in (Anis-
tratov et al., 2020), and they are shown in Table 1. For the
IFM Planner, ∆n = 0.35 m and ∆s = 0.25 m. The weighting
parameters for the performance criterion of the LQR are

Q̆ = diag(100, 0, 100, 0, 1000, 10, 10, 0), (18a)

R̆ = diag(20, 20, 20), (18b)
where diag( · ) creates a square diagonal matrix with the ele-
ments of the provided vector along the main diagonal.

For the SOM Planner, the weighting parameters in the objec-
tive function (11a) are set to cv = 0.05, cn,b = 10, nm =
0.5 m, cδ = 1, and R = diag(0.1, 0.1, 0.01). The number
of piecewise constant control inputs N is set such that the
step size is ∆s = 0.25 m. The vehicle initial state is x0 =
(60/3.6, 0, 0, 0, 0, 0, 0, 0), and the corresponding target longitu-
dinal velocity is vx,in = 60/3.6 m/s. For the vehicle steering
angle, the limit is δmax = π/3, and the control-input limits are
ūmax = −ūmin = (2.0, 2.0, 5.0). The parameters of the update
rule for τ are chosen as 1τ = 2.5, σ = 0.95, and α = 1.02.

5.3 Comments on Implementation

The IFM and SOM Planners were implemented using the
Python 3.8 programming language. The optimization problems
are declared using the nlpsol interface in the framework
CasADi (Andersson et al., 2019) and subsequently solved by
IPOPT (Wächter and Biegler, 2005), together with the MA57
linear solver (HSL, 2022). The longitudinal tire forces Fx,f

and Fx,r and the inputs uFx,f
and uFx,r

are scaled by a factor
1/1000 for improved numerical performance in the solver. When
showing the final solution, the inverse scaling is applied on
the affected variables. The presented performance results are
computed under the assumption that the segmented problems
are computed in parallel threads with access to a shared mem-
ory. It means that the time for each iteration is the maximum
computational time over all maneuver segments. To decrease
the computational time, strategies for the interior-point solver
configuration are adopted from (Wang and Boyd, 2010). The
maximum number of iterations for the IPOPT solver is chosen
as 120. A warm-start approach is used, with the target value and
the minimum value of the barrier parameter µ in the solver set to

Table 1. Vehicle parameters for the model.

Notation Value Unit Notation Value Unit
lf 1.3 m Cα,f 17 · 103 N
lr 1.5 m Cα,r 20 · 103 N
m 2100 kg µ 0.8 [-]
IZ 3900 kgm2 η 1 [-]
g 9.82 ms−2
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Fig. 5. Motion candidates computed by the IFM Planner. Obsta-
cles and road boundaries are shown with red rectangles and
lines, respectively.

0.01, and all warm-start related parameters of the solver IPOPT
are set to 10−9.

6. RESULTS

The motion-planning approach is evaluated to demonstrate
its performance. First, the results from the IFM Planner are
shown in a straight-road scenario. Second, the complete planner
is evaluated. For comparison, optimal-motion results without
segmentation are computed as well.

6.1 Motion Candidates and Initially Feasible Motion

For a straight-road scenario (C(s) = 0), where the number of
obstacles is L = 6, the computed motion candidates in the IFM
Planner are illustrated in Figure 5 with the dash-dotted lines. In
the top subplot, it is visualized how several motion candidates
are computed to reach each obstacle, and the corresponding
number of input paths are shown with the dotted lines in the
figure as well. The input paths are computed using nin,l,h(s) in
(7) for l ∈ {1, . . . , L+1} and the values of h that pass the simple
collision check (Section 3.2). This collision check ensures that
only motion candidates for input paths with obstacle-free start
and end points are computed (see the position at 1/4 of the
distance in s for each obstacle), thus saving computational time.

The input paths determined using the polynomial (7) aim to
guide in the computation of an initially feasible motion, and
are thus not necessarily to be followed as close as possible.
This is why deviations between an input path and a motion
candidate in Figure 5 are not of particular importance here. A
subset of the computed motion candidates are leaving the road
boundaries. However, the algorithm does not select them for the
initially feasible motion, since they are ruled out when running
the complete collision check (Section 3.3). The other subplots
in Figure 5 show selected vehicle variables and the inputs.

The selected motion candidates (based on hsel,l in Section 3.3)
give the initially feasible motion, and they are shown with the
dash-dotted dark green lines in Figure 5. The resulting initially
feasible motion has continuous inputs, see uδ , uFx,f

, and uFx,r ,
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Fig. 6. Solution comparison between the segment-based optimal
motion, the optimal motion, and the initially feasible
motion.

which is achieved by construction in the computational approach
in the IFM Planner (see Section 3). The input trajectory used
to drive the simulation of the motion candidates is not feasible
per se. However, since the motion candidates are computed
using the same model (2) as is used to compute the segment-
based optimal motion in the SOM Planner, the initially feasible
motion is feasible with respect to that model. This facilitates
computations in the subsequent SOM Planner. As a result of the
yaw dynamics, the vehicle shows decreases in the longitudinal
velocity vx even though the tire longitudinal forces Fx,f and
Fx,r are always positive in the example considered.

Figure 5 also compares the initially feasible motion with the
optimal motion, which is computed by solving the optimization
problem (11) for the complete scenario. The solutions have some
important similar characteristics such as position of extremum
points, see, e.g., the lateral position n, the lateral velocity vy,
and the vehicle orientation ψ. Since the vehicle orientation ψ
is used to find segmentation points for the SOM Planner, such
similarities are important, since it allows finding segmentation
points using the initially feasible motion trajectory close to the
a priori unknown segmentation points of the optimal trajectory.
The optimal motion uses noticeably less actuation in uδ, uFx,r ,
and uFx,f

, compared to the output from the IFM Planner.
Because of differences in the excitation of the yaw dynamics,
visible, e.g., in the differences in ψ for s = 60–90 m, the
longitudinal forces Fx,f and Fx,r are lower for the optimal
motion even though the longitudinal velocity vx decreases less.

6.2 SOM Planner

The segment-based optimal motion, i.e., the output from the
SOM Planner, is compared with the optimal motion in Figure 6
for the straight-road scenario. Initial values for the state and
control variables are set using the initially feasible motion, i.e.,
the output from the IFM Planner. The scenario is segmented
into five segments (M = 5), where the segmentation points are
found as extrema of the vehicle orientation ψ, while omitting
points that are too close to other points; in Figure 6, the points
at s = 57.75 m and s = 82 m are omitted.

The final solution for the segment-based optimal motion is
shown in Figure 6, where maneuver segments that are not
yet reached by the vehicle are continued to be updated as
the vehicle progresses along the road. It means that the first
maneuver segment (starting at s = 0 m) is initialized and then

updated only three times before the vehicle starts to follow that
maneuver segment, while the remaining maneuver segments
are updated three times in parallel during the same time. This
gives a computational time of about 0.46 s. While the vehicle is
following the first maneuver segment (about 1.3 s), maneuver
segments two to five are updated in parallel (ten times in total in
the example scenario considered). The same strategy is applied
until the vehicle reaches the final maneuver segment. Figure 6
illustrates a substantial improvement of the initially feasible
motion, and is similar to the optimal motion in many respects.
Compare, e.g., the vehicle lateral position n, orientation ψ, and
lateral velocity vy for the respective case. This concerns in
particular the motion at the later stages of the maneuver. This
shows that the developed planning approach is performing well
for the considered scenario.

The usage of the steering angle δ is drastically reduced for the
segment-based optimal motion compared to the initially feasible
motion in Figure 6. The longitudinal forces Fx,f and Fx,r of the
segment-based optimal motion have a similar trend compared
to the optimal motion, and the longitudinal velocity vx shows
a similar variation for both solutions, even though the values
are not matching completely. A possible explanation of this
difference is a low parameter weight on the velocity deviations
cv relative to the other parameters in the objective function (11a).

In this example scenario, no additional segments are added at
the end. The approach could, however, be extended such that
new segments are included to cover an extended distance beyond
the current final target. The maneuver segments are recomputed
with a period of approximately 0.13 s. Here, stationary obstacles
are considered. It would also be possible to take updated
obstacle information into account, before the vehicle reaches
the corresponding maneuver segment and commits to follow a
particular motion plan provided by the SOM Planner.

A curved-road scenario was also used for evaluating the motion
planner. The road started straight and then turned left or right,
with a curvature of ±0.01 m−1 after 10 m, i.e.,

C(s) =
{
0, if s < 10

±0.01, if s ≥ 10
(19)

The IFM Planner is aware of the road curvature and provides an
initially feasible motion for this scenario as well, even though the
input orientation ψin in (8) is computed under the assumption of
zero curvature (see Section 3.2). The SOM Planner computes the
segment-based optimal motion, which, as for the straight-road
scenario, improves the initially feasible motion and computes a
motion plan close to the optimal motion. Additional analysis of
this scenario is provided in the thesis (Anistratov, 2021).

7. CONCLUSIONS

Avoidance maneuvers at normal driving speed or higher are
demanding driving situations that force the vehicle to the limit
of tire–road friction in critical situations. A complete dynamics-
based two-step algorithm has been developed to handle long
scenarios involving multiple lane changes, and the main ideas
are captured in Figures 1, 3, and 4. The first main step, the IFM
Planner (see Figure 3), finds an initially feasible motion. The first
step within this planner is scenario division based on obstacle
locations, which is followed by the major steps of computing,
selecting, and combining dynamics-based motion candidates.
The second main step is the SOM Planner (see Figure 4). In that
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part, a scenario segmentation is first performed using a vehicle-
dynamics perspective, i.e., using vehicle variables such as the
vehicle orientation and yaw rate, to find favorable segmentation
points. Optimization is then performed for each of the segments
individually, under coordination using the alternating augmented
Lagrangian method. This combines the advantages of IPOPT in
terms of its efficient implementation and the convergence of the
interior-point method together with the alternating augmented
Lagrangian method, allowing parallel computation of maneuver
segments. The segmented optimization approach lends itself
well to computing the segments in a receding-horizon fashion,
where the motion plans for not yet reached parts are kept being
updated as long as the computational time allows it.

The complete algorithm was applied to a scenario with two
consecutive double lane-changes, and this was done for driving
speeds higher than where the kinematic-model assumption is
valid. It was shown that the IFM Planner was able to compute
dynamics-based motion candidates, and also to effectively find
an initially feasible motion. It was then shown that the SOM
Planner gave significant improvement of the motion by its use
of segmented optimization. Overall, the results show that the
complete algorithm is successful in finding a motion that handles
challenging scenarios at high speed.
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