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Abstract:
Electric vehicles still account for a small share of the total amount of cars on the road. One of
the major issues preventing a larger uptake is their higher upfront cost compared to petrol cars.
We aim to address this issue by investigating a module-based product-family approach to take
full advantage of economy-of-scale strategies, reducing research, development, and production
costs of electric vehicles. This paper instantiates a concurrent design optimization framework,
whereby different vehicle types share multiple modular powertrain components, whose size is
jointly optimized to minimize the overall operational costs instead of being individually tailored.
In particular, we focus on sizing battery and electric motors for a family of vehicles equipped with
in-wheel motors. First, we identify a convex model of the powertrain, capturing the impact of
modules’ sizing and multiplicity on the mechanical power demand and the energy consumption
of the vehicles. Second, we frame the concurrent powertrain design and operation problem as
a second-order conic program that can be efficiently solved with global optimality guarantees.
Finally, we showcase our framework for a family of three different vehicles: a city car, a compact
car, and an SUV. Our results show that concurrently optimizing shared components increases
the operational costs by 3.2% compared to individually tailoring them to each vehicle, a value
that could be largely overshadowed by the benefits stemming from using the same components
for the entire product family.
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1. INTRODUCTION

The transition to sustainable energy and mobility is not
progressing fast enough to meet objectives set by world
leaders (UNEP and Partnership, 2021). Electric Vehicles
(EVs) hold the potential to play a leading role in the future
of transportation, keeping cities less polluted and signifi-
cantly reducing CO2 emissions (IEA, 2020). Nevertheless,
their higher upfront cost compared to conventional petrol
vehicles could slow down the transition to cleaner mobility.
In order to address this issue, we leverage product-family
and economy-of-scale strategies to develop and produce
vehicles at a lower cost by designing their components
in a modular fashion. Each vehicle type contains one or
multiple identical modules, jointly optimized to minimize
the operational cost of the whole family, accounting for the
changing module’s size as well as multiplicity (Fig. 1). This
paper presents a convex design optimization framework
with the scope of concurrently sizing battery and electric
motors (EMs) for a family of battery electric vehicles
(BEV) equipped with in-wheel motors.

Literature Review: This paper pertains to two main re-
search lines: powertrain and product-family design. Pow-
ertrain design for single vehicles has been extensively stud-
ied, leading to a variety of models (Verbruggen et al.,
2019) and optimization strategies (Silvas et al., 2016).
For instance, Hofman and Salazar (2020) jointly design
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Fig. 1. Concurrent optimization design methodology.

powertrain and controls to minimize the energy consump-
tion, while Borsboom et al. (2021) and Salazar et al.
(2019) maximize performances. Anselma (2022) developed
a Computer-Aided Engineering (CAE) tool to compare
a predefined set of different hybrid topologies and sizes
to find the most suitable for a fleet of cars. However, to
the best of the authors’ knowledge, whilst most methods
do not account for multiple vehicles simultaneously, those
who do are not focused on battery electric vehicles and do
not have any global optimality guarantees.
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Fig. 2. Module-leveraging strategies in a family of vehicles.

The second research stream concerns product-family and
platform design. These methodologies have been widely
studied and employed by industrial players due to their
substantial benefits, proving to be effective in reduc-
ing components’ costs and providing operational advan-
tages in part sourcing, manufacturing, and quality con-
trol (Jiao et al., 2007). They also foster the develop-
ment and upgrade of differentiated products efficiently,
increase flexibility and responsiveness in manufacturing
processes (Robertson and Ulrich, 1998), and generate enor-
mous savings in research, testing, interface design, and in-
tegration (Otto et al., 2016). Finally, producing or buying
components in larger quantities triggers further saving,
enabling economy-of-scale strategies. Traditionally, in a
module-based product family, new products are instanti-
ated by adding, substituting, and removing one or more
functional modules (Simpson et al., 2006), such as the
battery pack or the electric motor. This strategy is called
horizontal leveraging and concerns more products sharing
the same modules for different applications. Conversely,
vertical leveraging involves scaling components to attack
different market niches. A visual representation of these
strategies is shown in Fig. 2. Nevertheless, the combined
application of module-based product family concepts and
vehicles optimization has not been studied extensively. A
thorough search of the relevant literature yielded only one
related study. Fellini et al. (2002a,b) used optimization for
making commonality decisions while controlling individual
performance in a family of cars and developed a sensitivity-
based commonality strategy for family products of mild
variation. Yet, their application concerns only automo-
tive body structures. In conclusion, to the best of the
authors’ knowledge, there still appears to be a research
gap regarding the application of product-family strategies
to powertrain design optimization.

1.1 Contribution

In this paper, we propose to bridge this gap by applying
modularity and standardization to a family of battery
electric vehicles. We introduce a framework consisting in
designing optimal single-sized modules, specifically an in-
wheel EM and a battery, for a whole family of vehicles.
Instead of individual scaling, we employ multiple copies
of the same module to reach higher nominal power and
battery capacity. The modules’ size is determined by using
a convex optimization approach, taking into account the
impact of changing components’ sizes and multiplicity to
find the optimal compromise between a vehicle-tailored
design that would minimize energy consumption, and the

flexibility to produce different kinds of vehicles to serve
customer needs. We refer to this methodology as “Concur-
rent Design Optimization” due to the fact that we perform
a joint optimization of multiple powertrain components,
considering every vehicle in the family simultaneously.

Organization: The remainder of this paper is structured
as follows: Section 2 presents the vehicles’ model, Section
3 formulates the optimization problem, and Section 4
presents the numerical results. Finally, the conclusions are
discussed in Section 5, along with an outlook on future
research.

2. MODEL

This section introduces the convex model of the vehi-
cles that we employ in our framework (Fig. 3). In line
with common practices, we used a quasi-static approx-
imation (Guzzella and Sciarretta, 2007) for each of the
main components that make up the powertrain: EMs and
battery. In Section 2.1 we introduce and explain the mean-
ing and use of scaling and multiplicity factors. Section 2.2
sets forth the longitudinal vehicle dynamics, and Section
2.3 gives insights on the vehicles’ mass model, taking into
account the changing components’ size in the optimization.
Section 2.4 focuses on the electric motor, and Section 2.5
on the battery modelling. Finally, Section 2.6 shows the
model we used to estimate the operational costs. For the
sake of simplicity, we drop dependence on time t whenever
it is clear from the context.

2.1 Scaling and Multiplicity Factors

We construct our model starting from the reference motor
and battery that we used for the identification of parame-
ters and we assume that quantities scale linearly with the
components’ size. For this reason, we introduce the scaling
factors

Sm =
Pm,max

Pm,max

,

Sb =
Eb,max

Eb,max

,

where Sm is the motor scaling factor, Pm,max and Pm,max

are the maximum output power of the motor and of
the reference motor, respectively. Similarly, Sb is the
battery scaling factor, while Eb,max and Eb,max are the
maximum energy of the battery and of the reference
battery. Nevertheless, this approximation is only valid in
the range of scales

Sm ∈ [Sm,min, Sm,max] ⊆ R+ (1)

Sb ∈ [Sb,min, Sb,max] ⊆ R+. (2)

Moreover, we account for the components’ multiplicity
in the powertrain by introducing the motor and battery
multiplicity: Nm,i ∈ N+ and Nb,i ∈ N+, with the subscript
i indicating that the quantity differs from one vehicle type
to the other. These pre-defined coefficients represent the
number of module units present in the powertrain.

2.2 Longitudinal Vehicle Dynamics

In order to compute the power requirement of the vehicles,
we consider a given driving cycle consisting of an exoge-
nous longitudinal speed and acceleration trajectory: v(t)
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Fig. 3. Block diagram of a generic vehicle

and a(t). For each vehicle, the required power Preq depends
on aerodynamic drag, rolling friction, gravitational force,
and inertial force.

Preq,i = mi · v · (cr,i · g · cos(θ) + g · sin(θ) + a)+

+
1

2
· ρ · cd,i ·Af,i · v3, (3)

where mi is the total mass of each vehicle subject to
optimization, cr,i the rolling friction coefficient, g the
gravitational acceleration, ρ the density of the air, θ the
road inclination, cd,i the aerodynamic drag coefficient and
Af,i the frontal area.

2.3 Mass

For each vehicle we compute the total mass as the sum
of glider (vehicle without powertrain), driver, battery,
and motor mass. While the glider mass m0,i varies from
one type of vehicle to another, motor and battery mass
are computed by scaling the reference components mass
mm and mb. Finally, the driver’s mass md is considered
constant for every vehicle.

mi = m0,i +md +mb · Sb +mm · Sm. (4)

2.4 Electric Motor

In this study, we consider in-wheel electric motors as
movers. Since there is a direct mechanical link between
motors and wheels, assuming that each motor handles an
equal amount of power, the output power of every motor
Pm,i can be computed as

Pm,i =

{
Preq,i

Nm,i
if Preq,i ≥ 0

rb,i · Preq,i

Nm,i
if Preq,i < 0

. (5)

In case of negative power requirement, we introduce a
regenerative braking fraction rb,i that the electric motors
can exert without destabilizing the vehicle. Moreover, each
motor is bounded to not exceed its operational limits
Pm,min and Pm,max, computed by scaling the reference
values:

Pm,i ∈
[
Pm,min, Pm,max

]
· Sm. (6)

Motor losses Pm,loss are computed by scaling a second-
order polynomial approximation of the reference motor
losses Pm,loss derived from the quadratic approach used
by Verbruggen et al. (2020):

Pm,loss = P0(ω) + β(ω) · Pm + α(ω) · P 2

m,

Fig. 4. Electric motor efficiency map from the model (left)
compared with data (right).

where the parameters P0(ω), β(ω), and α(ω) are depen-
dent on the motor speed ω and subject to identification.
Considering the scaling factor Sm, the motor losses become

Pm,loss,i =

(
P0(ω) + β(ω) · Pm,i

Sm
+ α(ω) ·

P 2
m,i

S2
m

)
· Sm,

yielding

Pm,loss,i = P0(ω) · Sm + β(ω) · Pm,i + α(ω) ·
P 2
m,i

Sm
.

Consequently, we can write the input power of each motor
Pac,i as

Pac,i = Pm,i + Pm,loss,i =

= Pm,i + P0(ω) · Sm + β(ω) · Pm,i + α(ω) ·
P 2
m,i

Sm
. (7)

This approximation is particularly useful in this context
since it allows to retain accuracy (NMRSE of 0.41%) and
complexity, as shown in Fig. 4, without losing convexity.
In fact, (7) can be relaxed to a convex second-order conic
constraint, as will be shown in Section 3.1.

2.5 Battery

The power output of the batteries Pb,i is computed from
the total motors’ input power Pac,i, taking into account the
inverter efficiency ηinv, the auxiliaries consumption Paux,i,
motor and battery modules’ multiplicity Nm,i and Nb,i as
follows:

Pb,i =

{
1

Nb,i
·
(

Pac,i·Nm,i

ηinv
+ Paux,i

)
if Pac,i ≥ 0

1
Nb,i

· (ηinv · Pac,i ·Nm,i + Paux,i) if Pac,i < 0
.

(8)

Assuming that every battery module supplies an equal
amount of output power, we approximate the internal
losses Ploss,b,i of each module with a quadratic function
of the output power:

Pb,loss,i =
P 2
i,i

Psc,i
,

where the coefficient Psc,i is a measure of the efficiency
of the battery. It has the dimensions of a power, and it is
called “Short Circuit Power” in reference to the power that
would be released short-circuiting the battery. In turn,
Psc,i depends on the battery energy Eb,i and the battery

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

368



size Sb and, in line with Verbruggen et al. (2020), can be
expressed as

Psc,i = min
k

{ak · Eb,i + bk · Sb} , (9)

where ak and bk are the linear and constant coefficients,
respectively, identified from a piecewise approximation
of the short circuit power curve as a function of the
reference battery energy. Hence, for each battery module,
the internal power Pi,i can be expressed as

Pi,i = Pb,i +
P 2
i,i

Psc,i
. (10)

The internal power induces a variation of the battery
energy Eb,i as

dEb,i

dt
= −Pi,i ·Nb,i. (11)

The energy consumption Econs,i is the difference between
the energy at the beginning of the driving cycle Eb,i(0)
and the energy remaining at its end Eb,i(T ),

Econs,i = (Eb,i(0)− Eb,i(T )) .

However, we consider the battery energy to stay within
operational limits, leading to

Eb,i ∈
[
Eb,max · ξmin, Eb,max · ξmax

]
· Sb ·Nb,i, (12)

where ξ is the state of charge of a battery module and
Eb,max is the maximum energy capacity of the reference
battery. To represent an average battery use during the
cycle, we impose that the average between the energy at
the beginning of the cycle Eb,i(0) and at the end Eb,i(T )
must equal the mean battery energy level:

Eb,i(0) +Eb,i(T ) = Sb (ξmax + ξmin) ·Eb,max ·Nb,i. (13)

2.6 Operational Costs

The costs of operation for each vehicle type Ji is estimated
considering the overall energy consumption during a life-
time of Ny years:

Ji = Ce · Econs,i ·
Ny ·Dyear

Dcycle
, (14)

where Dcycle and Dyear are the distance driven during
the cycle and during one year, respectively, whereas Ce

is the mean cost of electric energy. We neglect mainte-
nance costs as their influence is two orders of magnitude
smaller (König et al., 2021).

3. PROBLEM FORMULATION

In this section we formulate the concurrent design opti-
mization as a convex second-order conic problem. Section
3.1 shows the lossless relaxation of non-convex constraints,
while Section 3.2 introduces performance constraints and
Section 3.3 recalls the objective function before formulat-
ing the concurrent powertrain design problem as a second-
order conic program. Finally, in Section 3.4 we discuss the
assumptions and limitations of our approach.

3.1 Constraints Relaxation

In order for the problem to be framed in a convex fashion,
we need to relax constraints (5), (7), (8), (9), and (10).
Since our goal is to minimize the operational costs, and
consequently the energy consumption, these constraints
will always hold with equality. In fact, it is suboptimal to
assume any higher value than the strictly necessary since
it entails higher operational costs. For the sake of brevity,
we refrain from proving that these relaxations are lossless,
as the reason lies in the same principle. Therefore, (5) and
(8) become

Pm,i ≥
Preq,i

Nm,i
(15)

Pm,i ≥ rb,i ·
Preq,i

Nm,i
(16)

Pb,i ≥
1

Nb,i
·
(
Pac,i ·Nm,i

ηinv
+ Paux,i

)
(17)

Pb,i ≥
1

Nb,i
· (ηinv · Pac,i ·Nm,i + Paux,i) , (18)

whilst (7) and (10) can be expressed as second-order conic
constraints (Ebbesen et al., 2018) as

(Pac,i − Pm,i − Sm · P0(ω)− β(ω) · Pm,i) +
Sm

α(ω)
≥∥∥∥∥ 2 · Pm,i

(Pac,i − Pm,i − Sm · P0(ω)− β(ω) · Pm,i)− Sm

α(ω)

∥∥∥∥
2

,

(19)

(Pi,i − Pb,i) + Psc,i ≥
∥∥∥∥ 2 · Pi,i

(Pi,i − Pb,i)− Psc,i

∥∥∥∥
2

. (20)

Finally, (9) is relaxed to a set of affine inequalities:

Psc,i ≤ ak · Eb,i + bk · Sb. (21)

3.2 Performance Constraints

In addition to constraints on the powertrain, we included
performance constraints in contemplation of comparisons
with vehicles on the market. Thus, for each vehicle type,
we find, in order: acceleration time, top speed, power
gradability, torque gradability, and range constraints

Nm,i ·Sm · tacc ≤
ωr · r2w,i ·mi

Tm,max

+
mi ·

(
v2f + ω2

r · r2w,i

)
2 · Pm,max

(22)

Nm,i · Sm · Pm,max ≥ 1

2
· ρ · cd,i ·Af,i · v3max (23)

Nm,i · Sm · Pm,max ≥ mi · g · vmin · sin(θmax) (24)

Nm,i · Sm · Tm,max ≥ mi · g · rw · sin(θmax) (25)

Eb,i(0)−Eb,i(T ) ≤ Nb,i ·Sb ·(ξmax − ξmin)·Eb,max ·
Dcycle

Drange
,

(26)
where tacc is the maximum acceleration time from 0 to vf ,
vmax the top speed, Drange the minimum range, vmin is
the speed at which the vehicle shall be able to drive facing
a slope of θmax, and Tm,max is the maximum reference
torque. It can be computed from the maximum reference
power of the motor and the speed at which the maximum
torque and maximum power curves intersect, also called
rated speed ωr, as

Tm,max =
Pm,max

ωr
.

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

369



3.3 Objective Function and Problem Formulation

As the objective of the concurrent powertrain design
problem Jtot, we select the sum of i different operational
costs Ji, each one multiplied by the number of vehicles of
that type Nv,i in the fleet

Jtot =

I∑
i=1

(Nv,iJi) .

We state the cost-optimal sizing problem as follows:

Problem 1 (Concurrent Powertrain Design)
Given a family of battery electric vehicles with a modular
powertrain as shown in Fig. 3, the optimal components’
sizes for the whole family are the solution of

min Jtot
s.t. Shared Constraints (1), (2)

Powertrain Constraints (3),(4),(6), (11)-(21) ∀k ∀i
Performance Constraints (22)-(26) ∀i

This problem can be framed as a second-order conic
program and can be rapidly solved to global optimality
with standard algorithms.

3.4 Discussion

A few comments are in order. First, we scale the electric
motor mass linearly as a function of the maximum power.
Second, we scale the battery size only by acting on the
number of cells in parallel, thus changing its energy with-
out altering the battery voltage. These scaling methods are
in line with high-level modelling approaches and optimal
sizing design problems. In fact, if the size is between 50%
and 200% of the reference, the approximations are quite
accurate (Grunditz and Thiringer, 2017). Finally, it is
important to underline that, in our framework, the scal-
ing factors are optimization variables, while the modules’
multiplicities are given parameters. This limitation could
be readily overcome by solving a sequence of problems in
a combinatorial manner, yet this is beyond the scope of
the present paper.

4. RESULTS

In this section, we show the potential of our methodology
with a realistic use case for this methodology: the concur-
rent design of a fleet composed of a city car, a compact
car, and an SUV. The different parameters used in the
optimization can be found in Table 1. In our analysis,
we consider the Class 3 Worldwide harmonized Light-duty
vehicles Test Procedure (WLTP) for the speed and accel-
eration trajectories, whilst reference motor and battery,
minimum vehicle performance, and simulation parameters
are provided in Tables 2, 3 and 4. We discretize Problem
1 using the Euler forward method with a sampling time
of 1 s. Thereafter, we parse it with YALMIP (Löfberg,
2004) and solve it to global optimality with MOSEK (ApS,
2017), in approximately 2 s.

Our results show that sizing powertrain components con-
currently causes an increment in the costs of operations of

Fig. 5. Operating points of the electric motor module for
the all the different vehicles in the family.

3.2% for the family, compared to the individual vehicle-
tailored optimization. In Table 5 it is evident how both
the individual and concurrent approaches yield the same
outcome for the SUV. This result is in line with our
expectations: Since the SUV is the largest and heaviest
vehicle in the family, it has the highest demands in terms
of power required to complete the driving cycle (Fig. 5)
and associated energy consumption. Nonetheless, thanks
to the use of modularity and standardization, it is possible
to satisfy the demands by adding more modules instead
of increasing their size. Thus, in the concurrent design of
the family, the city car and compact car both have one
single battery module, whereas the SUV has two. The
vehicle-specific increment in cost of operations is presented
in detail in Fig. 6, where it is possible to notice different
values for the city car and the compact car, depending on
the approach. This difference can be ascribed to the fact
that a module shared among the whole family may still be
oversized for some vehicles to serve the entire fleet at best.
However, for both vehicles, the increase in operational cost
is accompanied by an improvement in performance, such
as a shorter acceleration time, an extended range, or a
higher top speed, as shown in Tables 6 and 7.

Even though the total cost of operations increases, it is
expected that the benefits derived from using components
shared by the entire product family will outperform the
downsides (Jiao et al., 2007), prompting further research.
In fact, car makers could exploit this methodology to set
up the least amount of production lines possible while
still being able to design a competitive family of vehicles,
capable of serving various customer needs. Moreover, shar-
ing the same type of modules allows further advantages
in logistics, using the same parts to assemble a wide
variety of products. Furthermore, the concurrent design
of the family would bring many advantages also to users,
reducing the cost and increasing the availability of spare
parts. Specifically, this feature would be a huge advantage
for an operator of a fleet of shared vehicles, since it allows
to keep using the modules in good condition from a vehicle
at the end of its service life.

5. CONCLUSIONS

This paper explored product-family design for electric
powertrain applications. We devised a concurrent op-
timization framework to design powertrain components
shared within a family of electric vehicles equipped with
in-wheel motors. Our framework can jointly optimize the
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Fig. 6. Operational cost of the three vehicles sharing
powertrain modules: a city car (left), a compact car
(centre), and an SUV (right). The blue and the orange
bars indicate the results attained with individual and
concurrent optimization.

Table 1. Vehicles Parameters

Symbol City Car Compact Car SUV Unit

Af 2.38 2.43 3.87 m2

rw 0.3498 0.3594 0.3630 m
cd 0.29 0.23 0.31 −
cr 0.01 0.008 0.02 −
ηinv 0.96 0.96 0.96 −
rb 1 1 1 −
m0 850 1250 2000 kg
md 85 85 85 kg
Nv 1 1 1 −

Table 2. Reference Motor and Battery Param-
eters

Symbol Value Unit

mm 81.6 kg

Pm,max 89.38 kW
mb 138.6 kg

Eb,max 23.48 kWh

Table 3. Minimum Performance Parameters.

Symbol Value Unit

tacc 15 s
vf 100 km/h
vmax 130 km/h
vmin 10 km/h
θmax 25 %
Drange 300 km

operation of the individual vehicles and the size of elec-
tric motors and battery, accounting for their multiplicity
within each powertrain, without requiring time-consuming
iterative methods. Conversely, the convex problem format
enabled us to rapidly compute the globally optimal so-
lution with off-the-shelf second-order conic programming
algorithms. Focusing on a three-vehicle family consisting
of an urban car, a compact car, and a sport utility vehicle,

Table 4. Simulation Parameters

Symbol Value Unit

ξmin 0.2 −
ξmax 0.8 −
Paux 500 W
Dyear 20000 km
Ny 5 years
Ce 0.36 EUR/MJ

Table 5. Results from individual and concur-
rent optimization.

Symbol
Individual

Conc. Opt. Unit
City Compact SUV

Sm 0.25 0.34 0.63 0.63 −
mm 20.55 27.79 51.45 51.45 kg
Pm,max 22.50 30.42 56.33 56.33 kW

Sb 2.73 2.82 7.76 3.88 −
mb 378 390 1076 538 kg
Eb,max 64.12 66.13 182.31 91.15 kWh

Table 6. Family performance and configuratio
as a result of individual design

Performance City Compact SUV Unit

Cost of Operations 16619 17142 47254 EUR
Vehicle Mass 1396 1837 3367 kg
Range 300 300 300 km
Acceleration Time 10.61 9.61 9.24 s
Top Speed 214 253 241 km/h
Energy Used 0.4616 0.4762 1.3126 MJ/km
N. of Motors 4 4 4 −
N. of Battery mod. 1 1 1 −

Table 7. Family performance and configuration
as a result of concurrent design

Performance City Compact SUV Unit

Cost of Operations 18075 18277 47254 EUR
Vehicle Mass 1679 2079 3367 kg
Range 392 388 300 km
Acceleration Time 5.10 5.87 9.24 s
Top Speed 290 311 241 km/h
Energy Used 0.5021 0.5077 1.3126 MJ/km
N. of Motors 4 4 4 −
N. of Battery mod. 1 1 2 −

our case-study revealed the potential of applying our novel
methodology to a fleet of EVs: Compared to the case where
the components are individually tailored to each vehicle,
concurrently designing shared components would increase
the operational costs by 3.2%.

This work opens the field for the following extensions:
First, our initial results prompt a detailed economical
analysis of the benefits of product-family design for EVs in
terms of horizontal leveraging and economy-of-scale. Sec-
ond, we would like to study different powertrain architec-
tures and transmission technologies. Finally, we are inter-
ested in jointly optimizing the multiplicity of component
units within each vehicle, leveraging the computational
speed of our approach to run a sequence of problems in
a combinatorial manner.

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

371



ACKNOWLEDGEMENTS

We wish to thank Dr. I. New, Ir. O.J.T. Borsboom,
Ir. F. Paparella, and Ir. C.A.J. Hanselaar for proofread-
ing this paper. This publication is part of the project
NEON with project number 17628 of the research pro-
gram Crossover which is (partly) financed by the Dutch
Research Council (NWO).

REFERENCES

Anselma, P.G. (2022). Electrified powertrain sizing for
vehicle fleets of car makers considering total ownership
costs and CO2 emission legislation scenarios. Applied
Energy, 314, 118902.

ApS, M. (2017). MOSEK optimization software. Available
at https://mosek.com/.

Borsboom, O., Fahdzyana, C.A., Hofman, T., and Salazar,
M. (2021). A convex optimization framework for min-
imum lap time design and control of electric race cars.
IEEE Transactions on Vehicular Technology, 70(9),
8478–8489.

Ebbesen, S., Salazar, M., Elbert, P., Bussi, C., and Onder,
C.H. (2018). Time-optimal control strategies for a
hybrid electric race car. IEEE Transactions on Control
Systems Technology, 26(1), 233–247.

Fellini, R., Kokkolaras, M., Michelena, N., Papalambros,
P., Saitou, K., and Perez-Duarte, A. (2002a). A
sensitivity-based commonality strategy for family prod-
ucts of mild variation, with application to automotive
body structures. In AIAA/ISSMO Symp. on Multidis-
ciplinary Analysis and Optimization.

Fellini, R., Kokkolaras, M., and Papalambros, P.Y.
(2002b). Platform selection under performance loss
constraints in optimal design of product families. In
ASME Design Engineering Technical Conferences - De-
sign Automation Conference.

Grunditz, E.A. and Thiringer, T. (2017). Modelling and
scaling procedure of a vehicle electric drive system.
Technical report, Chalmers University of Technology.

Guzzella, L. and Sciarretta, A. (2007). Vehicle propulsion
systems: Introduction to Modeling and Optimization.
Springer Berlin Heidelberg, second edition.

Hofman, T. and Salazar, M. (2020). Transmission ratio
design for electric vehicles via analytical modeling and
optimization. In IEEE Vehicle Power and Propulsion
Conference.

IEA (2020). Global ev outlook 2020. Technical report,
IEA, Paris.

Jiao, J., Simpson, T., and Siddique, Z. (2007). Product
family design and platform-based product development:
a state-of-the-art review. Journal of Intelligent Manu-
facturing, 18(1), 5–29.

König, A., Nicoletti, L., Schröder, D., Wolff, S., Waclaw,
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