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Abstract: Ubiquity of connected devices ranging from cellphones to in-vehicle navigation systems has 

enabled information rich routing and navigation services. Eco-routing utilizes these infrastructure and data 
about the routes to ascertain and inform the driver the energy cost of traversing a route to their destination. 

An accurate energy consumption model of the vehicle traversing the route is essential to perform eco-

routing effectively. Unfortunately, very accurate energy consumption models also contain operating 

strategies that their owners are disinclined to disclose publicly. We propose the use of partially 

homomorphic cryptosystem for private function evaluations to enable secure eco-routing. A novel way to 

encrypt the energy consumption model to enable secure eco-routing, methods for private evaluation of the 

encrypted energy consumption model, and the associated protocol are described. Practical considerations 

for implementing such a system are explored through software implementation.   

Keywords: Private function evaluation, eco-routing, Paillier cryptosystem, partially homomorphic 
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1. INTRODUCTION 

Energy consumption for transportation in the US is reported 

to be 26% total energy usage in 2020; 55% of which is 

accounted for by light-duty vehicles (EIA 2022). It remains 

one of the significant sources of greenhouse emissions and 

reduction in energy usage through improvement in 

efficiency of vehicles remains a priority. One of the 

efficiency improvement strategies is energy conscious 

routing of vehicles, commonly termed eco-routing (Barth et 

al. 2007), where a driver traverses the route with least energy 
consumption to get to their destination. Eco-routing is 

shown to be very effective in reducing trip energy cost; on 

average 5% and up to 15% energy reduction (Brown et al. 

2014). This potential makes it a worthy candidate to pursue 

for widespread implementation and use. The computation of 

an eco-route requires the knowledge of the relationship 

between the road conditions on a route and the energy 

consumption of the vehicle being driven. The energy 

consumption model of the vehicle quantifies the energy 

efficiency of each route between two places. 

Routing is widely used in the form of GPS-based navigation 
systems on vehicles and cell phones. Historically, the 

navigation system was implemented on-board with mapping 

and routing components built into a single product. Ubiquity 

of connected devices such as cell phones and data up link in 

automobiles has enabled decoupling of mapping and routing 

from step-by-step navigation; exemplified by Google Maps, 

Waze etc. In this new paradigm, a device such as a cell 

phone sends a routing request, specifying its position and a 

destination, to a server. The server then uses a rich map 

database to find a route between the specified origin-

destination (OD) pair and responds to the request with a 

route.  Eco-routing is an extension of this process with a key 
difference; the request for eco-route needs to also include 

description of the vehicle or energy consumption model of 

the vehicle. The energy consumption model is used to 

compare candidate routes. These are unique for a vehicle 

model and may also be customized for individual driving 

styles. The candidate routes and corresponding trade-offs 

are then presented to the driver for selection. An example 

interface used to present the eco-route and to communicate 

the trade-off is shown in Fig 1. 

 
Fig. 1. Eco-routing 

The challenge in deploying eco-routing, compared to widely 

available routing and navigation, stems from disinclination 

of automakers to disclose very accurate and high-fidelity 

energy consumption model of vehicles. This reluctance is 

attributed to maintaining a competitive advantage because 

some control strategies may be discerned from such models. 

Since accuracy of the energy consumption model directly 

affects the decision metric for eco-routing, they are a 
necessary enabler.  

There are two well-known potential solutions to this 

dilemma. First solution is to use vehicle agnostic energy 

consumption models for eco-routing. This obviates the need 

for disclosure of energy consumption model from 

automakers but are reported to have error accuracy of about 

9% over the trip (Holden et al. 2018). This level of error 
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makes them harder to use for eco-routing reliably. The 

second solution is to use the accurate energy consumption 

models but rely on the eco-routing service provider, cloud 

service, and all parties in between to maintain the 

confidentiality of the energy consumption model. This 

solution may work based on the level of risk tolerance and 

trade-off with cost for some. The instances of data leak and 

misuse by employees of the cloud service providers (Cox 

2021) is a cause for concern. 

Another solution to preserving the confidentiality of the 
energy consumption model while enabling computations 

required for eco-routing is to use homomorphic 

cryptosystems. Homomorphic encryption schemes allow for 

mathematical operations on numbers in their encrypted form 

(Yi et al. 2014). The energy consumption model would be 

encrypted and sent to the eco-routing service, which then 

uses homomorphic operations to calculate eco-route without 

ever decrypting the energy consumption model. In this work 

we propose an application of homomorphic encryption, 

private function evaluation, for enabling eco-routing. The 

remainder of this paper introduces concepts pertaining to 
eco-routing and encryption schemes, describes the proposed 

eco-routing protocol, a method to encrypt the energy 

consumption database that enables private function 

evaluation, and brief note on practical considerations. 

2. BACKGROUND 

2.1 Energy consumption model for eco-routing  

Energy consumption of vehicles have two components: the 

characteristics of the powertrain that converts stored energy 
into tractive force; and the reaction of the driver to road 

conditions that transpires into an energy demand for the 

powertrain (Hegde et al. 2020).  

𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑉𝑣𝑒ℎ . (𝑀𝑡𝑜𝑡𝑎𝑙�̇�𝑣𝑒ℎ + 𝑀𝑐𝑢𝑟𝑏  𝑔 𝑠𝑖𝑛(𝜃𝑔𝑟𝑎𝑑𝑒) +

𝑀𝑐𝑢𝑟𝑏𝐶𝑟𝑟 𝑔 𝑉𝑣𝑒ℎ  cos (𝜃𝑔𝑟𝑎𝑑𝑒) +
1

2
𝜌𝑎𝑖𝑟𝑉𝑣𝑒ℎ

2  𝐶𝑑  𝐴𝑓)         (1) 

A simplified representation of power required for a vehicle 

to travel at speed 𝑉𝑣𝑒ℎ and acceleration �̇�𝑣𝑒ℎ over a road 

segment with road grade 𝜃𝑔𝑟𝑎𝑑𝑒 is given by (1), where, the 

total mass of the vehicle and its curb weight is 𝑀𝑡𝑜𝑡𝑎𝑙 and 

𝑀𝑐𝑢𝑟𝑏 respectively, 𝐶𝑟𝑟 is the rolling resistance, 𝜌𝑎𝑖𝑟 is the 

air density, 𝐶𝑑 is the drag coefficient, and 𝐴𝑓 is the effective 

frontal area. The traction power 𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 , along with 
intermediate power transfer component efficiencies, is used 

to compute the total power consumption of the vehicle. It is 

to be noted that accurate estimation of power consumption 

over a road segment requires the knowledge of the 

powertrain parameters and efficiencies. The velocity of the 

vehicle and the acceleration are determined by the driver’s 

response to the road conditions comprising traffic signals, 

stop signs, pedestrians, vehicular traffic, road surface, 

statutory speed limits etc. The velocity of the vehicle over a 

route can be predicted with a-priori knowledge of these road 

conditions via a driver behaviour model, extracted from 

historical data (Chen et al. 2013), or from data aggregation 
entities such as google maps, HERE maps etc.  

The energy consumption model for eco-routing application 

is simplified by two important steps: 1) by assuming that the 

velocity and acceleration of the vehicle resemble a typical 

vehicle, available through recorded historical data or 

through real-time data streams on the traffic state; and 2) by 

modelling energy consumption as a function of both 

powertrain parameters and road conditions. A great example 

of such a model is RouteE (Holden et al 2020) from National 

Renewable Energy Laboratory (NREL). They represent the 

energy consumption of a vehicle traveling over a road 

segment as a function of the attributes of the road such as 

average speed, length, elevation, road grade, number of 

lanes etc. The function may be realized by a look-up table or 
a regression. 

 

2.2 Eco-routing as a service 

Eco-routing as a service off-loads computations of routing 

and energy consumptions onto a server and thereby reduces 

workload of the vehicle’s onboard computing resources or 

of a smartphone. A schematic for eco-routing service is 

shown in Fig 2. A client device such as vehicle or a 

smartphone is used by the driver to send eco-routing 

requests to the server. The request typically includes origin, 

destination and the vehicle’s energy consumption model or 
parameters to inform a predetermined energy consumption 

model. The eco-routing server uses the energy consumption 

model to quantify the advantage of traversing a route. To do 

so, the server queries map databases for features of the route 

such as speed, stops, road grade etc. to inform the energy 

consumption model. The source of these road features may 

reside on multiple servers across many data vendors. The 

energy consumption model is then evaluated to compute the 

total energy consumption of the vehicle on a particular road-

segment and hence over a route.  

 
Fig 2. Eco-routing as a service 

Several routes are identified from origin to destination and 

their respective energy consumption, trip time, traffic 

congestion etc. are computed. Among the routes, a 

predetermined number of routes, including ones with lowest 

fuel consumption and fastest trip times, are collected. 

Finally, the trade-off between energy consumption and 

travel time is sent to the requester along with the routes as 

illustrated in Fig 1. The response from the eco-routing 

service may also include metrics such as 𝐶𝑂2  emission, 

monetary cost etc. The requester, in this case a driver, then 
chooses a route from the response to drive on to their 

destination. In the case of a fleet, this decision may be made 

with heuristic metrics. 
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2.3 Cryptosystems and homomorphism 

A cryptosystem, loosely defined, are algorithms that define 

the mapping between a plaintext and ciphertext. The 

ciphertext is the entity intended to be protected. An 

encryption operation converts a plaintext into ciphertext 
using a key, and a decryption operation converts ciphertext 

back to the correct plaintext. In this paper, the notation in (2) 

is used for encryption and decryption operation. Encrypted 

numbers (ciphertext) are represented in boldface in 

expressions. The relationship between ciphertext and 

plaintext are also described by (2) 

𝐸(𝑚) = 𝒎; 𝐷(𝒎) = 𝑚; 𝐷(𝐸(𝑚)) = 𝑚      (2) 

A class of cryptosystems known as public-key 

cryptosystems is used in this work and is illustrated in Fig 3. 

This cryptosystem relies on two sets of keys: a public key 

(𝑘𝑝𝑏); and a private key (𝑘𝑝𝑣). The keys may be a set of 

numbers depending on algorithms used in a particular 

cryptosystem. The public key is necessary for the encryption 

operation: 𝒎 = 𝐸(𝑚, 𝑘𝑝𝑏). The encrypted number may be 

decrypted correctly only with the corresponding private key: 

𝑚 = 𝐷(𝒎, 𝑘𝑝𝑣). Decryption operation with any other key 

yields incorrect plaintext. This type of cryptosystem is used 

to securely communicate sensitive data. As an example, 

Alice generates their public and private keys, and broadcasts 
their public key. Bob uses Alice’s public key to encrypt a 

message and sends it to Alice. Since only Alice’s private key 

can decrypt the message, anyone else with access to the 

communication cannot read the message. (Yi et al. 2014) 

 
Fig. 3. Public key cryptosystem 

A subset of the cryptosystems, homomorphic cryptosystem, 

has a unique property which allows mathematical operations 

on the encrypted numbers such that the result, when 

decrypted, corresponds to a mathematical operation on the 

corresponding plaintexts. A cryptosystem with additive 

homomorphic property satisfies (3) where 𝑓𝐻𝑀 is an 
operation on the encrypted numbers. 

𝐷 (𝑓𝐻𝑀(𝐸(𝑚1), 𝐸(𝑚2))) =  𝑚1 + 𝑚2          (3) 

The homomorphic property enables private function 

evaluations where an encrypted mathematical function is 

evaluated by an entity without the need for decryption. The 

function evaluation results are also encrypted and hence this 

operation can be securely done by a cloud service provider 

or a server without leaking the contents of the mathematical 

model. In this paper, we utilize this private function 

evaluation concept for secure eco-routing. 
A cryptosystem that is homomorphic under any arbitrary 

operation qualifies as Fully Homomorphic Encryption 

(FHE). This is an active research field and a breakthrough   

in 2009 enabled FHE realization (Gentry 2009). While FHE 

systems are capable of arbitrary operations enabling any 

private function evaluation, they also are computationally 

extremely expensive. Partially Homomorphic Encryption 

(PHE) schemes have limited homomorphic properties but 

provide an alternative to FHEs. Since computation time is 

important for a real-time operation of eco-routing system, 

we propose the use of Paillier cryptosystem, a PHE, for 

private evaluation of energy consumption models. 

Paillier cryptosystem (Paillier 1999) is a public-key 

encryption scheme with partial homomorphic properties. A 
brief review of the Paillier encryption scheme and its 

properties described in (Yi et al. 2014) are presented here. 

As is the case with public-key encryption schemes, there are 

three major steps in utilizing them: key generation; 

encryption; and decryption. 

Key generation: Two large prime numbers 𝑝, 𝑞 are chosen 

randomly such that gcd(𝑝. 𝑞, (𝑝 − 1). (𝑞 − 1)) = 1. 

Compute 𝑛 = 𝑝. 𝑞 and 𝜆 = 𝑙𝑐𝑚(𝑝 − 1, 𝑞 − 1), where gcd is 

greatest common denominator, and lcm is least common 

multiple. Select a random integer 𝑔 ∈ ℤ𝑛2
∗  i.e. 𝑔𝑛 =

1 𝑚𝑜𝑑 𝑛2. The public encryption key is then  𝑘𝑝𝑏 = (𝑛, 𝑔); 

and the private decryption key is 𝑘𝑝𝑣 = (𝜆, 𝜇) where 𝜇 =

(𝐿(𝑔𝜆(𝑚𝑜𝑑 𝑛2)))−1(𝑚𝑜𝑑 𝑛). Note that the negative 

exponent signifies modular multiplicative inverse. 𝐿 is a 

utility function defined as 𝐿(𝑢) = (𝑢 − 1)/𝑛. 

Encryption: to encrypt a message 𝑚 ∈ ℤ𝑛, select a random 

𝑟 ∈ ℤ𝑛
∗  and compute the encrypted message (4): 

𝐸(𝑚, 𝑘𝑝𝑏) = 𝒎 = 𝑔𝑚 . 𝑟𝑛(𝑚𝑜𝑑 𝑛2)             (4) 

Decryption: to decrypt a ciphertext 𝒎, use the private 

decryption key 𝑘𝑝𝑣 and compute (5): 

𝐷(𝒎, 𝑘𝑝𝑣) = 𝑚 = 𝐿 (𝑐𝜆(𝑚𝑜𝑑 𝑛2)) . 𝜇(𝑚𝑜𝑑 𝑛)    (5) 

Note that the encryption operation can be performed with 

the public key which is generally not a secret. Essentially, 

once the public key is published, anyone can encrypt new 

messages using the public key. Decryption can only be 

performed with the private key which is kept a secret and all 

messages encrypted with the corresponding public key can 

be decrypted with and only with the private key. 

Homomorphic properties: The Paillier encryption scheme 

has two interesting homomorphic properties: homomorphic 
addition; and limited homomorphic multiplication (Yi et al. 

2014). Consider two encrypted numbers 𝒎𝟏 =
𝑔𝑚1𝑟1

𝑛(𝑚𝑜𝑑 𝑛2) and 𝒎𝟐 = 𝑔𝑚2𝑟2
𝑛(𝑚𝑜𝑑 𝑛2). 

Homomorphic addition of the two numbers can be achieved 

by multiplication of the ciphertexts (6): 

𝐸(𝑚1 + 𝑚2) = 𝒎𝟏. 𝒎𝟐 = 𝑔𝑚1+𝑚2(𝑟1𝑟2)𝑛(𝑚𝑜𝑑 𝑛2)   (6) 

Upon decryption, product of two encrypted numbers results 

in their summation. This additive homomorphic property 

extends to addition of an encrypted number (𝑚3) to an 

unencrypted number given that the public key is known (7). 

𝐸(𝑚1 + 𝑚3) = 𝒎𝟏. 𝑔𝑚3 = 𝑔𝑚1+𝑚3(𝑟1)𝑛(𝑚𝑜𝑑 𝑛2)    (7) 

Paillier encryption scheme also has a limited multiplicative 

homomorphism which enables multiplication of encrypted 

number with an unencrypted number (8): 

𝐸(𝑚1. 𝑚3) = 𝒎𝟏
𝑚3 = 𝑔𝑚1.𝑚3(𝑟𝑚3)𝑛(𝑚𝑜𝑑 𝑛2)     (8) 

An encrypted number raised to the power of an unencrypted 

constant 𝑚3, results in encrypted product of the encrypted 

and unencrypted numbers. Note that homomorphic 

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

137



 

 

     

 

multiplication, an operation that results in the encrypted 

product of two numbers, is not feasible in this encryption 

scheme. In this paper, these partial homomorphic properties 

are used to construct a protocol for secure eco-routing that 

allows for private evaluation of the energy consumption 

models. 

3. SECURE ECO-ROUTING 

Secure eco-routing proposed in this work relies on private 

function evaluation techniques. It is enabled by three well-

coordinated components: a partially homomorphic 
encryption scheme that enables evaluation of encrypted 

energy consumption model; formulation of encryption of the 

energy consumption model such that they are secure and 

amenable to private evaluation; and an eco-routing protocol 

to facilitate the encryption, evaluation, and eco-routing. The 

novelty of our work relies in crafting these three components 

to enable eco-routing as an application of homomorphic 

cryptosystems (Hegde and Chang 2020). This section 

elaborates on the specific formulation of energy 

consumption models for encrypted evaluation, the secure 

eco-routing protocol, and private evaluation of encrypted 

energy consumption models. 

3.1 Formulation of energy consumption models for secure 

eco-routing 

The energy consumption model for eco-routing is 
represented in two forms in this paper: look-up table (LUT); 

and polynomial. The inputs to these models, which may 

include road grade, speed limits etc., are represented as 𝑋 =
{𝑥, 𝑦, 𝑧. . . }. The look-up table form is described by a grid of 

independent variables 𝑋𝑖,𝑗,𝑘,… = {𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘 , . . . } which map 

to the value of the energy consumption 𝑓𝑖,𝑗,𝑘,..(𝑋𝑖,𝑗,𝑘,..). An 

arbitrary value of the energy consumption is evaluated by 

interpolation using the energy consumption values at grid 
points that are closest to the inputs. Equation (9) shows the 

1-dimensional case where the fuel consumption is evaluated 

at the input 𝑥; where 𝑥𝑎 and 𝑥𝑏 are the grid points in the 

look-up table with defined function values. 

 

 𝑓(𝑥) = 𝑓(𝑥𝑎) +
𝑥−𝑥𝑎

𝑥𝑏−𝑥 
∗ (𝑓(𝑥𝑏) − 𝑓(𝑥𝑎));𝑥𝑎 ≤ 𝑥 ≤ 𝑥𝑏 (9) 

We propose formulating LUT based energy consumption 

model as a tuple of plaintext input grid points and encrypted 

energy consumption values: 〈 𝐸(𝑓𝑖(𝑋𝑖)),  𝑋𝑖〉; illustrated in 

Fig 4. The encrypted value of the function at the grid points 

𝑋𝑖 is the corresponding 𝒇𝒊(𝑋𝑖) in the tuple. This encrypted 

representation of the energy consumption model can be 

evaluated with partially homomorphic encryption as 

described in the following sections. 

 
Fig 4. Energy consumption model 

The polynomial form of the energy consumption model is 

described by the coefficients 𝑊 =  {𝑤1 , 𝑤2 , … , 𝑤𝑁} and 

their weighted sum of the inputs 𝑋 = {𝑥, 𝑦, 𝑧, … } and their 

combinations as exemplified in (10). 

𝑓(𝑋 = {𝑥, 𝑦, 𝑧, … }) = 𝑤1𝑥 + 𝑤2𝑦 + 𝑤3𝑥𝑦 + 𝑤4𝑧2𝑦 + ⋯ 

(10) 

 We propose that the polynomial form of the energy 

consumption model be represented by a tuple of encrypted 

coefficients and their corresponding relationship to the 

inputs: 〈𝐸(𝑊), 𝑋〉 =  〈(𝒘𝟏, 𝑥), (𝒘𝟐, 𝑦), (𝒘𝟑, 𝑥𝑦) … 〉. 
Evaluation of this tuple yields an encrypted value of the 
energy consumption as described in the following sections. 

The advantage of these representations of the encrypted 

energy consumption model lies in their flexibility to adapt 

to various types of modelling paradigms and sensitivities to 

each available input feature. 

 

3.2 Secure eco-routing protocol 

The secure eco-routing protocol defines the relationship and 
dataflow between a client device that initiates a request for 

eco-routing, and a server (eco-routing service) that 

computes eco-route using private function evaluation. The 

following presents the eco-routing protocol. 

Client: 

1. Generate public key and private key for public key 

homomorphic encryption scheme 
2. Encrypt energy consumption database with public key as 

described in Section 3.1 

3. Send Origin, destination, and encrypted energy 

consumption database, and public key 

4. Wait for response from eco-routing service 

5. Receive N routes along with respective trip time and 

encrypted energy consumption 

6. Decrypt encrypted energy consumption with private key 

7. Find the route with least energy consumption that meets 

all the given criteria 

 

Eco-routing service: 
1. Receive origin-destination (OD), and encrypted energy 

consumption database, and public key 

2. Generate N candidate routes for the OD pair 

3. for N candidate routes do: 

a. for each segment of the route do: 

i. generate dynamic road data X (grade, traffic 

density, speed limits etc.) 

ii. evaluate encrypted energy consumption 𝒇(𝑋)  from 

the encrypted energy consumption database as 

described in Section 3.3 
iii. accumulate encrypted energy consumption  

b. Store encrypted total energy consumption ∑𝑓𝑖(𝑋𝑖) 

4. Evaluate secondary trip criteria: trip time, via points etc. 

5. Return all N routes with their respective trip time, and 

encrypted energy consumption 

 

3.3 Private evaluation of energy consumption model 

The encrypted energy consumption models are evaluated on 

the server using homomorphic properties of the encryption 

scheme. The private evaluation of the model is necessary to 
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ensure confidentiality of client’s data encapsulated in the 

model.  

3.3.1. Evaluation of encrypted energy consumption with 

LUT model 

Evaluation of a 2-D encrypted look-up table using linear 

interpolation for two features of the road segment is 
illustrated in this section. Hence, the objective is to evaluate 

𝒇(𝑥, 𝑦) =  𝐸(𝑓(𝑥, 𝑦)) given x, y. First, the grid points 

around (x, y) are obtained by finding grid points 

𝑥𝑎 , 𝑥𝑏 , 𝑦𝑎 , 𝑦𝑏 such that 𝑥𝑎 ≤ 𝑥 ≤ 𝑥𝑏 and 𝑦𝑎 ≤ 𝑦 ≤ 𝑦𝑏. Then 

encrypted energy consumption at the grid points are looked 

up as shown in (11) 

𝒇𝒂𝒂 = 𝐸(𝑓(𝑥𝑎 , 𝑦𝑎)), 𝒇𝒂𝒃 = 𝐸(𝑓(𝑥𝑎 , 𝑦𝑏)), 𝒇𝒃𝒂 =
𝐸(𝑓(𝑥𝑏 , 𝑦𝑎)), 𝒇𝒃𝒃 = 𝐸(𝑓(𝑥𝑏 , 𝑦𝑏));      (11) 

The 4 coefficients for linear interpolation are then computed 

using the grid points and inputs (12) 

 

 𝐶𝑎𝑎 = (
(𝑥𝑏−𝑥)(𝑦𝑏−𝑦)

(𝑥𝑏−𝑥𝑎)(𝑦𝑏−𝑦𝑎)
) ; 𝐶𝑏𝑎 = (

(𝑥−𝑥𝑎)(𝑦𝑏−𝑦)

(𝑥𝑏−𝑥𝑎)(𝑦𝑏−𝑦𝑎)
)  

𝐶𝑎𝑏 = (
(𝑥𝑏−𝑥)(𝑦−𝑦𝑎)

(𝑥𝑏−𝑥𝑎)(𝑦𝑏−𝑦𝑎)
) ; 𝐶𝑏𝑏 = (

(𝑥−𝑥𝑎)(𝑦−𝑦𝑎)

(𝑥𝑏−𝑥𝑎)(𝑦𝑏−𝑦𝑎)
)           (12) 

 

Note that 𝐶𝑎𝑎 , 𝐶𝑎𝑏 , 𝐶𝑏𝑎 ,  𝐶𝑏𝑏 are unencrypted plaintexts 

while 𝒇𝒂𝒂 , 𝒇𝒂𝒃 etc. are encrypted. Finally, using the 

properties of Paillier homomorphic encryption scheme the 

encrypted energy consumption at x,y is calculated (13) 

𝐸(𝑓(𝑥, 𝑦)) = 𝒇(𝑥, 𝑦) = (𝒇𝒂𝒂)𝐶𝑎𝑎 ⋅ (𝒇𝒂𝒃)𝐶𝑎𝑏  ⋅ (𝒇𝒃𝒂)𝐶𝑏𝑎  ⋅
(𝒇𝒃𝒃)𝐶𝑏𝑏  (𝑚𝑜𝑑 𝑛2)  (13) 

The process for N-dimensional look-up table is similar with 

2𝑁 look-up operations and power operations, and 2𝑁 − 1 

multiplications of encrypted energy consumption values. 

 

3.3.2. Evaluation of encrypted energy consumption with 

polynomial model 

Similarly, evaluation of a polynomial encrypted energy 

consumption for two road features is illustrated in this 

section. Assuming that the energy consumption of the 

vehicle at 𝑥, 𝑦 is modeled as (14) 

𝑓(𝑥, 𝑦) = 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑦 + 𝑤4𝑦2 + 𝑤5𝑦2𝑥. (14) 

The encrypted energy consumption is obtained, using 

properties of Paillier homomorphic encryption scheme, as 

shown in (15):                                    

𝐸(𝑓(𝑥, 𝑦)) = 𝒘𝟏
𝑥  .   𝒘𝟐

𝑥2
.   𝒘𝟑

𝑦
 .   𝒘𝟒

𝑦2

.   𝒘𝟓
𝑦2𝑥

 (𝑚𝑜𝑑 𝑛2) (15) 

Unlike the look-up table case, the number of operations 

required to evaluate the encrypted energy consumption 

depends on the number of terms in the polynomial model 

and not the number of input road features. A polynomial 

model with N terms requires N power operations and N-1 

multiplications of encrypted numbers. Accumulation of the 

total energy consumption over a route is obtained by adding 

the encrypted energy consumption of each segment of the 

route: 𝐸(∑𝑓𝑖) = ∏𝐸(𝑓𝑖)(𝑚𝑜𝑑 𝑛2) 

4. IMPLEMENTATION AND RESULTS 

The Paillier encryption scheme is defined for non-negative 

numbers and hence it is necessary to ensure the energy 

consumption model does not yield a negative number. 

Typically, energy consumption is always modelled to be 

zero or positive but special attention needs to be paid for 

intermediate values of interpolation as well to ensure they 

are positive. In Section 2.3 on key generation, it is stated that 

the encryption key 𝑛 can be a product of any two large 

primes 𝑝, 𝑞. A consequence of Paillier encryption scheme is 

that any number greater than 𝑛 changes to a corresponding 

modulus on 𝑛. Consequently, all numbers in evaluation of 

the energy consumption and accumulated energy 

consumption must be less than 𝑛 and hence, in principle 

there needs to be a lower bound on selection of the primes 

𝑝, 𝑞 depending on the energy consumption model 

parameters. In practice however, recommended key-length 

for security, at least 1024 bits, far exceeds any fuel 

consumption value for a reasonable trip, even if measured in 

micrograms or millijoules per road segment. 

 
Fig 5. Time required for encrypted fuel consumption 

evaluation for 100 road segments. 

The Paillier encryption scheme and the described private 

function evaluation of energy consumption model for eco-

routing are implemented in Python using an open-source 

library python-paillier (CSIRO’s Data61 2013). This library 

handles key generation, homomorphic operations, and 

managing floating point numbers by appropriate integer 

encodings. Encrypted look-up tables and encrypted 

polynomial models are implemented as described in section 

3.1. Time required for evaluation of energy consumption for 
100 road segments by private evaluation of the look-up 

tables and polynomial models are presented in Fig 5. The 

graph also presents impact of using two key-lengths for 

encryption: 1024 bits and 2048 bits. It should be noted that 

the private function evaluation code is not optimized for 

speed and runs sequentially on the computer. The number of 

operations for encrypted look-up table (LUT) evaluation 

increase exponentially with the number of dimensions, this 

is reflected in the time taken for the operations. It is feasible 

to parallelize operations in (11), (12), and (13), but their 

impact on computation time may depend on the number of 
dimensions of LUT. The example case of energy 

consumption model described by Holden et al. 2020 has 4 

input features and can be represented by a 4-dimensional 

LUT. This evaluation costed about 2.15s for 100 road 

segments. Polynomial representation of the energy 

consumption model shows a linear trend with respect to the 

number of terms. The key-length for encryption has a 

proportional impact on computation time so it is important 
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to balance the trade-off between security and turn-around 

time for eco-routing.  

The computation time trend for LUT and polynomial can be 

approximated as 𝛼 ⋅  2𝑁𝑙 and 𝛽 ⋅ 𝑁𝑝 respectively where 𝛼 

and 𝛽 are constants, 𝑁𝑙 is number of dimensions in LUT, 

and 𝑁𝑝 is number of terms in the polynomial. Table 1 

presents the best fit for the results presented in Fig. 5. 

Table 1. Coefficients for computation time trends 

Key-length (bits) 𝜶 𝜷 

1024 0.1354 0.1823 

2048 0.4695 0.6251 

Computational time parity can be calculated using this 

approximation to compare relative efficiency of LUT and 

polynomial representation of the energy consumption 

model. Fig. 6 shows the computation time parity curve 
𝛼

𝛽
2𝑁𝑙 − 𝑁𝑝 = 0. Region under the curve represents higher 

efficiency compared to the corresponding LUT dimension. 

For instance, if an energy consumption model represented 

as a 5D LUT can also be represented as a polynomial with 

fewer than 24 terms, then the polynomial representation is 

more computationally efficient.  

 
Fig 6. Computation time parity of LUT and polynomial 

models 

A combination of LUT and polynomial can also be used to 

represent an encrypted energy consumption model. This 

hybrid version with 2-D LUT which contained encrypted 

coefficients for a polynomial with 6 terms is implemented 

as an example. The computation time for the hybrid model 
is 1.25s and 4.36s for key-lengths of 1024 and 2048 bits 

respectively. The error introduced by the secure eco-routing 

methods is negligible, at around 3 × 10−14%, across all 

cases. 

5. CONCLUSIONS 

Secure eco-routing using partially homomorphic encryption 

scheme and private function evaluation is presented in this 

paper. The unique representation of the energy consumption 

model coupled with Paillier encryption scheme enables the 

secure eco-routing protocol described. The methods 

presented in this paper may be extended to other 

representations of energy consumption models. The 
challenge in doing so primarily resides in tailoring the 

representation of the model to fit the choice of encryption 

scheme. Private function evaluations can accommodate 

larger and more complex model representations such as 

neural networks but comes with added computational 

expense. 
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