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Abstract: In this paper, the energy efficiency improvement optimization strategy is explored
for large-scale hybrid electric vehicles (HEVs) in a connected environment. Both reducing
vehicle speed fluctuation and increasing high efficiency working conditions of HEV powertrain
are beneficial for fuel economy improvement. A hierarchical optimization strategy is designed
in this paper, where the speed consensus problem is considered in the upper layer and an
energy management problem is considered in the lower layer. To deal with optimization of
large-scale HEVs, mean field game (MFG) is employed for speed consensus. Meanwhile, model
predictive MFG-based control scheme is developed with consideration of distribution predication
error caused by the uncertainties of road and traffic. With connection of vehicle to everything
(V2X), the real-time distribution can be calculated in the big data center and sent back to
individual HEV for model predictive MFG-based controller. Simulations are conducted to show
the effectiveness of the proposed strategy.

Keywords: Model predictive mean field game, energy efficiency improvement, HEVs, speed
consensus, V2X.

1. INTRODUCTION

Compared to internal combustion engine vehicles, hybrid
electric vehicles (HEVs) are gaining increasingly popular
when facing with the pressure of sustainable development
goals and carbon neutral target around the world. HEVs
have the advantage in achieving the carbon emission re-
duction since there are multiple energy resources, includ-
ing engine and motor connecting with battery, to propel
the vehicle, which makes engine in high efficiency condition
more frequently. With the fast development of communi-
cation technologies between vehicle to vehicle (V2V) and
vehicle to infrastructure (V2I), the potentials in improving
fuel economy further for HEVs becomes more realisable
than before (Vahidi (2018)).

Under the satisfaction of driver’s demand torque, the
main work of HEV powertrain control, named as energy
management strategy (EMS), is to distribute the torque
between engine and motor, where the optimization goal is
the energy consumption minimization. There have been
a lot research focusing on this issue, starting from the
dynamic programming (DP) (Lin (2003)) and Pontryagin’s
maximum principle (PMP) (Kim (2011)), which are de-
rived from optimal control theory. In DP and PMP based
approaches, the optimal solution is obtained under the
assumption that the driving cycle is known in advance
and the traffic scenario does not change in algorithm ap-
plication. To deal with this unreasonable assumption and

the computation burden of DP, model predictive control
(MPC) (or receding horizon control) is widely employed for
energy management strategy of HEVs. With the help of
V2V and V2I, the future driver behavior learning promotes
the energy efficiency further improvement for MPC-based
HEV energy optimization. For example, Gaussian pro-
cess was employed for driving demand torques prediction
(Zhang (2020)).

Except for EMS, vehicle speed is also a key factor influ-
encing the fuel economy since an unreasonable speed may
lead to the traffic jam and sequently lead to higher energy
consumption. In very recently, the jointly optimization
of speed planning (or eco-driving) and EMS for connect-
ed and automated HEVs has been attracting attention.
Moreover, with utilization of vehicle to everything (V2X)
information, the energy management strategy design for
a group of HEVs in special scenarios becomes popular
(Yu (2016); Xu (2021); Wei (2022)). When the proportion
of connected and automated HEVs running on the road
continues increasing in the future, the optimization of
large-scale HEVs will become a problem, especially the
computation burden of a centralized controller can not be
ignored. To the knowledge of author, there is few research
focusing on this topic.

This paper mainly deal with the powertrain efficiency
optimization and speed planning for large-scale HEVs by
employing mean field game (MFG). MFG is an attractive
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approach to deal with the large-scale agents by introducing
a distribution function to describe the behavior of whole
agents and a decentralized controller is derived (Lasry
(2007)). In the traditional MFG, a time-dependent open
loop optimal solution is derived, which has a natural weak-
ness in the face of uncertainty of future time (Fu (2020)).
Moreover, when dealing with the complex nonlinear sys-
tem, it is hard to derive an analytical solution and it makes
the numerical solution time-consuming. Compared to our
previous work in (Fu (2020)), the main contribution of this
paper is introducing the sense of model predictive (MP)
to MFG and applied to the EMS of large-scale HEVs. An
MFG problem is solved in the predictive horizon while the
real-time distribution is computed remotely and updated
back to individual agent. In this way, the proposed MP-
MFG based controller has better performance when facing
with the uncertainty and computation burden.

The rest of this paper is organized as follows. Section
2 gives the problem description of large-scale vehicles in
connected environment to reduce energy consumption. In
Section 3, the modelings of HEV powertrain system and
energy consumption including fuel consumption and elec-
tricity consumption are described. The proposed two-layer
optimization strategy is given in Section 4. Simulation
results to verify the proposed strategy are given in Section
5. Section 6 makes a conclusion of this paper.

2. PROBLEM DESCRIPTION

When vehicle running in a connected traffic environment,
it is possible to communicate with other traffic partici-
pants, shown in Fig. 1. The real-time information of indi-
vidual vehicle, such as vehicle speed, can be sent to big
data center through V2I connection; on the other hand,
the real-time traffic information, such as traffic density
along the route, can be available to individual vehicle to
improve the driving safety and fuel economy.

As the number of vehicles running on the route becomes
extremely large, it becomes easy to cause a traffic jam
due to unsuitable individual running speed. Sequently,
the energy consumption of vehicle in this traffic scenario
increases since the large-scale vehicles’ speeds play an
important role in the traffic utilization rate and fuel
economy. Reduction of vehicle speed fluctuation and high
vehicle speed are beneficial to fuel economy improvement.
Meanwhile, the centralized controller that regulates the
vehicle speed faces with the computation burden when
dealing with large-scale vehicles. On the other hand, the
fuel economy can be improved for HEVs by real-time
distributing the torques between engine and motor to keep
them in high-efficiency condition.

This paper will explore the solutions to above problem by
employing the mean field game theory. The designed con-
trol scheme based on MFG is decentralized by introducing
a distribution function to describe the behavior of whole
vehicles and only individual state signal is necessary as
feedback signal. In the actual application, there exists the
uncertain of the traffic environment, such as rolling coef-
ficient, which leads to the inaccuracy prediction of whole
vehicles’ behavior by this distribution function. Thank to
V2I connection technology, the whole vehicles’ state can be
sent to big data center and this distribution function can
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Fig. 1. Large-scale HEVs in connected environment
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Fig. 3. Powertrain structure of parallel HEV

be calculated and sent back to each vehicle through V2I.
Through above analysis, a model predictive-MFG (MP-
MFG) controller can be developed for speed consensus,
where the real-time initial distribution of whole vehicles’
speeds is available to the designed controller, shown in
Fig. 2. MP-MFG has the advantage in dealing with the
uncertainties since only first element of the derived optimal
sequence is used as feedback signal and this distribution
is updated in the prediction horizon. Meanwhile, with
determination of demand driving torque, the torque split
optimization between engine and motor is designed to
further reduce energy consumption.

As discussed above, the communication signals sending
from individual to big data center is the real-time vehicle
speed through V2I; the big data center receives speeds
of whole vehicles, calculates the updated distribution and
broadcasts this updated distribution to whole vehicles by
V2I. Thus, the communication burden is small.
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3. MODELING

3.1 Powertrain Model

Under the assumption that the powertrain structure of
each HEV in the connected environment shown in Fig. 1 is
identical shown in Fig. 3 and vehicle longitudinal dynamics
is described as follows:

M
dv

dt
=

τd
Rtire

− Fresis(v), (1)

where v is the vehicle velocity. M and Rtire denote vehicle
mass and tire radius, respectively. The resistance force
Fresis includes the air resistance, the rolling resistance and
gravity resistance, which is expressed as follows:

Fresis(v) =
1

2
ρCdAv2 + µMg cos θ +Mg sin θ, (2)

where ρ, Cd, A, g, µ and θ represent air density, drag
coefficient, frontal area, gravitational acceleration, rolling
coefficient and slope, respectively.

For a parallel HEV powertrain, the driving torque τd
shown in (1) in the HEV mode is seen as the summation
of the engine torque τe and motor torque τm

τd = igi0ηf (τe + τm), (3)

where ig and i0 represent gear ratios of automatic trans-
mission and differential gear, and ηf is the transmission
efficiency of driveline, it is assumed to be 1 in this paper.

In rotation speed calculation of parallel powertrain, with
determination of ig and v, the engine speed ωe and the
motor speed ωm in HEV mode are same, which are
calculated through following equation:

ωe = ωm = igi0
v

Rtire
. (4)

3.2 Energy Consumption Model

The fuel consumption rate ṁf of a gasoline engine is
described as a map form following the relationship between
the engine speed and the engine torque, defined as the
brake specific fuel consumption (BSFC), shown in Fig.
4(a). Based on Fig. 4(a), fuel consumption rate ṁf is fitted
in a polynomial form:

ṁf = a0 + a1Ne + a2τe + a3N
2
e + a4Neτe

+a5τ
2
e + a6N

3
e + a7N

2
e τe + a8Neτ

2
e ,

(5)

where aj , j ∈ {0, 1, ..., 8} are the identified parameters,
and Ne =

30
π ωe.

The electricity consumption rate ṁe is seen as the elec-
tricity power used in motor to drive the vehicle as follows:

ṁele = ηmτmωm, (6)

where motor efficiency ηm is described in Fig. 4(b).

3.3 Modeling Rewritten under Torque Split Rate

Based on (3), a torque split rate α ∈ [0, 1] to distribute the
demand driving torque between engine torque and motor
torque is introduced, which is defined as

α = igi0
τe
τd

. (7)
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Fig. 4. Map data of the efficiencies of the engine and motor

Then, the motor torque τm in HEV mode through τd and
α is calculated as

τm = (1− α)
τd
igi0

. (8)

Sequently, the fuel consumption rate ṁf and electricity
consumption rate ṁele can be rewritten as follows:

ṁf = b0 + b1α+ b2α
2, (9)

where parameters bk, k ∈ {1, 2, 3} are as follows
b0 = a0 + a1Ne + a3N

2
e + a6N

3
e ,

b1 = a2
τd
igi0

+ a4
Neτd
igi0

+ a7
N2

e τd
igi0

,

b2 = a5
τ2d
i2gi

2
0

+ a8
Neτ

2
d

i2gi
2
0

,

(10)

and

ṁele = ηmτmωm = ηm
τdv

Rtire
(1− α). (11)

4. UPPER LAYER-SPEED CONSENSUS

4.1 MP-MFG Optimization Problem Formulation

For each vehicle i, it has the same target, including
maximizing the traffic utilization, and reducing the energy
consumption. With information of start time t0 and end
time tf , the length of prediction horizon is obtained as
∆T = tf − t0. The cost function J is defined as follows:

Ji (τd,i, v̄)=

∫ tf

t0

L (vi(t), v̄(t), τd,i(t)) dt+Φ(vi(tf ), vd) , (12)

where stage cost L and terminal cost Φ are described as{
L (vi(t), v̄(t), τd,i(t)) = γ1 (vi(t)− v̄(t))

2
+ τd,i(t)

2,

Φ(vi(tf ), vd) = γ2 (vi(tf )− vd)
2
,

(13)
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where γ1 and γ2 are the weight factors. In L, the first
item represents the minimization of tracking of individual
vehicle’s speed to average speed v̄, and the second item
represents the minimization of driving torque fluctuation,
which is seen as the energy consumption minimization. In
Φ, the goal is to achieve target of speed consensus with vd
being the vehicle speed limit on the road.

The minimization of cost function shown in (12) under the
constraints is summarized as follows:

min
τd,i

Ji (τd,i, v̄) ,

s.t.



dvi(t)

dt
=

1

M

(
τd,i(t)

Rtire
− Fresis(vi)

)
,

τd,i,min ≤ τd,i(t) ≤ τd,i,max,

vi(t0) = vi,0,

v̄(t) = lim
N→+∞

N∑
i=1

vi(t)

N
,

(14)

where the state variable is vehicle speed vi and control
input is driving torque τd,i for each vehicle.

It is noted that with the dynamic model of vehicle speed, it
is possible to predict the future speed within the predictive
horizon [t0 tf ]. Then v̄ can be derived for finite vehicles.
However, when the number of vehicle becomes very large,
calculation of v̄ become hard.

4.2 Optimal Solution

When the number of vehicle is very large, an empirical dis-
tribution probability density functionm(v, t) is introduced
to describe the whole vehicles behavior, defined as

m(v, t) =
1

n

n∑
i=1

δvi=v, (15)

where δvi=v is the indicator function that is equal to 1 if
vi = v and 0 otherwise.

It is noted that the average speed v̄(t) can be calculated
through m(v, t). For simplicity, the vehicle index i is
omitted in the following parts. Based on the Fokker-Planck
(FP) equation, the mean field dynamics of whole vehicles
shown in (14) is described as follows:

∂m(v, t)

∂t
= − ∂

∂v

(
m(v, t)

1

M

(
τd(t)

Rtire
− Fresis(v)

))
, (16)

Based on optimal theory, the Hamiltonian function is
written as follows:

H =
(
γ1 (v(t)− v̄(t))

2
+ τ2d (t)

)
+p

1

M

(
τd(t)

Rtire
− Fresis(v)

)
.

(17)

For optimal solution to minimize Hamiltonian function
in Eq. (17) within control input constraints, following
equation should be satisfied:

∂H

∂τd
= 2τd(t) + p(t)

1

MRtire
= 0. (18)

Solution τd within constraints is calculated as follows:

τd(t) = − 1

2MRtire
p(t). (19)

Thus, the actual optimal driving torque τ∗d with considera-
tion of demand torque boundaries is determined as follows:

τ∗d (t) =


τd,min, if τd(t) ≤ τd,min,

τd,max, if τd(t) ≥ τd,max,

− 1

2MRtire
p(t), else.

(20)

Then, the co-state function p is determined through
Hamiltonian function in Eq. (17) as follows:

dp

dt
= −∂H

∂v
= −2γ1 (v(t)− v̄(t)) +

ρCdAv

M
. (21)

There is a terminal cost Φ(v(tf ), tf ) in cost function (12),
the co-state p(t) in terminal time tf is calculated as follows:

p(tf ) =
∂Φ(vf , tf )

∂vf
= 2γ2 (v(tf )− vd) . (22)

In summary, the PMP-based optimal condition and FP
equation are written as follows:

τ∗d (t) = − 1

2MRtire
p(t),

dv

dt
=

1

M

(
τd(t)

Rtire
− Fresis(v)

)
,

v(t0) = v0,

dp

dt
= −2γ1(v(t)− v̄(t)),

p(tf ) = 2γ2(v(tf )− vd),

∂m(v, t)

∂t
= − ∂

∂v

(
m(v, t)(

τd
Rtire

+ P +Q)

)
,

(23)

where P = − 1
2M ρCdAv2(t) and Q = −µg cos θ − g sin θ.

Since it is difficult to analytically obtain the optimal
control input sequence satisfying the optimal conditions
in Eq. (23), two works should be conducted to deal
with above condition: 1) how to calculate the partial
differential equation; 2)how to obtain the optimal solution.
To solve above two problems, a Lax-Friedrichs scheme
based numerical solution method is employed to obtain
the updated m in the next time step; Newton Raphson
method is employed by guessing initial costate to derive
the optimal control solution sequence within prediction
horizon [t0, tf ]. Then only the first element of this solution
sequence is used for the real-time control of large vehicles.
The distribution m is updated and used as an initial
condition at each time step.

5. LOWER LAYER-POWERTRAIN CONTROL

5.1 Optimization Problem Formulation

The goal of this optimization in HEV powertrain control
is to minimize the energy consumption in monetary sense,
including gasoline consumption and electricity consump-
tion, thus the cost function in following equation contains
two part. Moreover, there exist some constraints that the
optimization problem has to follow. It is noted that the
battery dynamics is not considered in this optimization
since the speed consensus period is short in the upper
layer. It is assumed that battery capacity is large enough so
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that battery state varies very small in the speed consensus
time. Thus, a static optimization problem is formulated as

min
[α,ig ]T

{
rf
ρf

ṁf (τe, ωe) + reṁele(τm, ωm)

}
,

s.t.



τe = α
τd
igi0

,

τm = (1− α)
τd
igi0

,

αmin ≤ α ≤ αmax,
τe,min ≤ τe ≤ τe,max,
τm,min ≤ τm ≤ τm,max,

(24)

where rf and re denote prices of fuel and electricity, ρf
is the fuel conversion factor between grams and liters.
The inequalities in (24) represent the physical powertrain
constraints, especially the torques of engine and motor.

5.2 Optimal Torque Distribution

Since the gear number of an automatic transmission is
limit, it is possible to derive the optimal torque split rate
α under a gear number firstly. Then compare with limit
optimal split rates, the optimal pair of α and ig can be
derived. For a gear number gn, the total cost rate ṁto is
the sum of fuel cost and electricity cost in (9) and (11),
written as

ṁto(gn) =
rf
pf

ṁf + reṁele

=
rf
pf

(
b0 + b1α+ b2α

2
)
+ reηm

τdv

Rtire
(1− α)

= c0 + c1α+ c2α
2,

(25)

where detail expressions of c0, c1 and c2 are written as
c0 =

rf
pf

b0 + reηm
τdv

Rtire
,

c1 =
rf
pf

b1 − reηm
τdv

Rtire
,

c2 =
rf
pf

b2.

(26)

Firstly, the optimization without any constraint is con-
sidered, and the optimal solution should satisfy following
condition in this case:

dṁto(gn)

dα
= 2c2α+ c1 = 0, (27)

then the candidate solution in this case is calculated as

αtmp(gn) = − c1
2c2

. (28)

Due to existences of physical torque limitation in HEV
powertrain, α is not able to reach its boundary in some
cases, the actual αact(gn) is summarized as follows:

ᾱact(gn) = max

(
αmin,

τe,minigi0
τd

, 1− τm,maxigi0
τd

)
,

αact(gn) = min

(
αmax,

τe,maxigi0
τd

, 1− τm,minigi0
τd

)
.
(29)

Finally, the actual optimal α∗ should one of the candidate
solution αtmp(gn) within limitation case, maximum point
ᾱact(gn) and minimum αact(gn), which is determined as

α∗(gn) = argmin
{
ṁto(α

tmp), ṁto(αact), ṁto(ᾱact)
}
. (30)

In summary, the block control diagram of proposed s-
trategy for individual HEV i is shown in Fig. 5. It is

Vehicle&
Powertrain

v

Torque-split 
Calculation

g,ii
MP-MFG-based

Optimization

i

,e it

,m it

,d it

Static
Optimization

Big data center

Fig. 5. Block control diagram of proposed strategy for
individual HEV i

noted that whole vehicles in this connected environment
send their real-time speed information to big data center
through V2I and receives the updated speed distribution
from big data center. The driver torque of each vehicle is
derived by proposed MP-MFG-based optimization, with
only real-time information of itself speed vi and the updat-
ed distribution m, which is obtained from V2I connection.
Moreover, for the HEV powertrain, the torque split calcu-
lation is conducted by a static optimization algorithm to
distribute engine torque and motor torque, which only is
dependent on itself speed and the demand driving torque
from MF-MFG-based optimization algorithm. Thus, the
proposed optimization strategy is decentralized for large-
scale vehicle.

6. SIMULATION VERIFICATION

6.1 Simulation Condition Setting

To verify the proposed algorithm, a high-density HEV
powertrain simulator is built, where the physical param-
eters used in this paper are listed in Table 1, they are
provided by Toyota Motor Corporation, Japan. The pa-
rameters used for the proposed algorithm is listed in Table
2. The sampling times of the simulator and control scheme
in upper layer are 0.1 s and 1 s, receptively.

Table 1 Specification parameters of the HEVs

Parameters Symbol Values

Vehicle mass M 1138[kg]
Wheel radius Rw 0.3015[m]
Air density ρair 1.2[kg/m3]
Front area A 2.239[m2]

Drag coefficient Cd 0.32
Rolling resistance µ 0.022

Differential efficiency ηf 0.98
Final differential ratio i0 3.95
Maximum gear ratio ig,max 3.5
Minimum gear ratio ig,min 0.65

Table 2 Basic parameters of the control scheme

Parameter Value Parameter Value

N 20[-] ts 1[sec]
ρf 750[g/L] rf 165[U/L]
vd 100[km/h] re 27[U/kWh]

6.2 Simulation Results

Simulation results are given in Fig. 6 and Fig. 7. In Fig. 6,
the probability distribution densities of vehicle speed, driv-
ing torque and energy consumption in monetary sense
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Fig. 6. Distributions of vehicle speed, driving torque and
cost rate in different time

of 1000 vehicles are given. It is found that the vehicle
speeds are not identical at the initial time, where the
probability density is very low; then under the designed
control scheme, the distribution density becomes high,
which means the vehicle speeds become identical. Similar-
ly, the driving torques become identical finally. Moreover,
the cost rate reduces to a small value when time increases.

Fig. 7 shows the the performance comparisons under differ-
ent scenarios, including different initial speed distribution-
s, different disturbance amplitudes and different weight
factors. It is noted that item ηdWi is added to the actual
simulation system to emulate uncertainties in vehicle dy-
namic function, caused by unknown road condition and
the modelling error. dW denotes an independent standard
Brownian motion. It is found that vehicle speeds become
identical although the initial distributions are different.
Similar conclusions can be obtained under different distur-
bance amplitudes and different weight factors. Meanwhile,
it is found that higher γ1 leads to a faster speed identical
behavior for large-scale vehicles.

7. CONCLUSION

A hierarchical energy management strategy is developed
for large-scale HEVs to reduce energy consumption in a
connected environment. A speed consensus controller is
designed by MP-MFG approach and a static optimization
strategy is designed for real-time HEV powertrain control.
It is found that the MFG-based control scheme in receding
horizon sense with utilization of V2X technology can

Fig. 7. Vehicle speed comparison under different scenarios

improve the performance in high speed maintaining and
the sequent high powertrain efficiency. It is also found that
the energy consumption in monetary sense is low when
vehicle is in high-speed maintaining mode.
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