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Abstract: Entropy measures uncertainty present within the data. Highly Automated Vehicles
(HAVs) can navigate safely and efficiently if location information of occluded dynamic objects
is available. It is assumed that dynamic objects have GPS receivers, and location information
can be acquired through a fast communication link. However, GPS info can be easily modified
or suffers from high error because the transmission link is not secure or due to Non Line of
Sight (NLOS) between transmitter and receiver. To solve this problem, an entropy metric is
introduced to ascertain the value of the supplied information and reject information with a high
amount of error present within the data. This work focuses on pedestrians as dynamic objects
and uses Finite State Machine (FSM) based hierarchical control to navigate HAVs. It is shown
that the entropy metric can improve the efficiency of the control of HAVs.

Keywords: Control of automotive systems, Intelligent driver aids, Kalman Filtering techniques
in automotive control, In-vehicle communication networks, Entropy, Finite State Machine,
Scan Matching.

1. INTRODUCTION

Entropy is a tool frequently used in statistics to assess
the average level of uncertainty present in the samples
of a random variable. Highly Automated Vehicles (HAVs)
have a level of autonomy 5 as per SAE standard, in an ur-
ban environment, HAVs are highly dependent on position
information of occluded dynamic objects. Position infor-
mation of occluded dynamic objects is critical for safe and
efficient navigation for all the stakeholders. When collected
through sensors, this information is vulnerable to hacking
and high errors due to urban canyons. These errors can
cause accidents and unnecessary delays in the navigation
of HAVs. An entropy-based metric can be used to assess
the value and reliability of data received. This work uses a
simulation setup with occluded pedestrians, and control
of HAVs to assess whether using such a metric would
benefit the operation of HAVs. For explanation, three such
scenarios are presented in section 1.2 and illustrated in
Fig. 1.
The entropy of a random variable gives the value present
within the information. In the case of highly likely events,
information is less valuable and vice versa. Consider a
discrete random variable X = {x1, x2, ..., xn} and Prob-
ability Mass Function (PMF) as P(X). Then entropy can
be explicitly written as shown in (1)
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H(X) = −
n∑

i=1

P (xi)logbP (xi). (1)

Where b is the base of the logarithm, we have used b = 10,
which is used when the probability of the event occurring
is 1/10. If H(x) has a high value, we can classify it as poor
quality, meaning information with high error and data can
be rejected.

1.1 Literature Review

Entropy has been used to control automated vehicles to
assess the reliability of data received on several occasions.
In Jwa et al. (2008), a method is presented for data fusion
to track, recognize, and monitor Intelligent Transportation
Systems (ITS). In this problem, Robust data alignment
is done for successful data fusion. A cost criterion based
on entropy is proposed for outlier rejection. In Adamey
and Ozguner (2011) multiple targets must be tracked with
multiple dynamic sensing agents. Mobile sensing agents
plan their motion so that tracking can be efficient and
accurate. An entropy-based cost function is utilized to
reject information with an unacceptable error range.
In Adamey et al. (2015) a scenario is established where
three types of vehicles exist on a highway. Namely, fully
equipped, partially equipped, and not-equipped. A fully-
equipped vehicle has local sensors and communication ca-
pability. In contrast, a partially-equipped vehicle can only
communicate, and a not-equipped vehicle cannot com-
municate and does not have local sensors. The objective
is to maintain a tracking list of all the vehicles present
in the scenario with a tracking list in the partially and
fully equipped vehicles. A Kalman Filter (KF) is used
for data fusion and correction, and a covariance matrix
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generated through KF is used to measure the system’s
entropy. Data is rejected and considered unreliable if the
entropy is beyond a threshold. This is used to determine
location of occluded pedestrians in ”occupancy grid”
In the present work, the pedestrian case is chosen because
the safety of all the stakeholders is critical. As local sensors
of ego vehicles cannot detect occluded pedestrians, com-
munication setups have to be established. In our simula-
tion setup, we use the information of occluded pedestrians
through LTE/4G.
In case pedestrians are occluded, several methods are
utilized to detect a pedestrian. In one method, using off-
camera on the streets in an industrial area is used to
detect the pedestrians through WiFi Borges et al. (2012).
However, this solution is costly and not scalable. Another
method by Gelbal et al. (2017) utilizes software-defined
radio to transmit the position of pedestrians that, in
turn, is also very expensive as dedicated DSRC modules
are too expensive. In Flores et al. (2018) 802.11 b/g/n
communication method is used so that HAVs can receive
position information of occluded pedestrians, and the data
is fused with LIDAR to get accurate results. However, this
solution is also too expensive and not scalable. Currently,
we do not have a vast network of WiFi routers in the road
infrastructure. Sugimoto et al. (2008) used 3G/WLAN to
communicate pedestrian information to the vehicle. How-
ever, it was not fast enough that the problem could become
scalable and choke the network if the number of vehicles or
pedestrians increased. With 4G/LTE and 5G, pedestrians
can send their position information, and the communica-
tion modules are affordable. We suggest this communica-
tion protocol for sharing pedestrian location information
with the vehicle. We have assumed all pedestrians have cell
phones with GPS sensors available for pedestrian localiza-
tion. The problem with GPS sensors is that it suffers from
Non-Line of Sight (NLOS) in urban areas due to high-
rise buildings and can have a high amount of position,
navigation, and timing errors, which can have errors up
to 50 meters. Also, GPS transmitting frequency can be
easily generated, and fake information can be generated to
misguide the sensor, resulting in accidents or unnecessary
collision avoidance measures from the ego vehicle.
We have developed a process to detect occluded dynamic
objects in our proposed method. We assume that the typi-
cal profile of errors in GPS position information is known,
and we will use baseline controllers to compare with our
design controller of ego vehicle to prove our system is more
efficient and safe using performance metrics.

1.2 Simulation Case Study

To explain Vulnerable Road Users (VRU). We are present-
ing three cases in Fig. 1 taken from ISO standard 22737
section 3.1 ISO (2022). Fig. 1(a) is inspired from section
3.1.1 and Fig. 1(b) and Fig. 1(c) is inspired from section
3.1.2. in (b), a bicyclist comes from an alleyway and ap-
pears suddenly in front of the ego vehicle. Similarly, in (c),
a bicyclist appears from an uncontrolled intersection. Col-
lectively pedestrians and bicyclists are classified as VRUs.
The implemented simulation setup is shown in Fig. 1(a). A
static pedestrian who is falsely reporting its position with
high errors. An occluded dynamic pedestrian jaywalking
and a parked vehicle on one road lane. Such a setup is
created to show that using entropy and extra information

Fig. 1. Scenarios: (a) pedestrian on street, (b) Bike from
alleyway, (c) Bike in uncontrolled intersection

from the environment can result in the safe and efficient
control of HAVs. The goal is to test our proposed method
with multiple baselines to show our method’s effectiveness
using some performance metrics. Goals achieved in this
case study are listed below

• Introduced an entropy-based metric that will assess
the reliability of position information received

• Designed some metrics to measure the performance
of HAVs in terms of energy consumed and minimum
distance to a dynamic object maintained by HAVs

• Designed Finite State Machine based hierarchical
control of ego vehicle

In the next section entire architecture of how communi-
cation setup is created and how entropy is performed to
assess the position accuracy of the data and the metrics
utilized to measure the performance of the process is
defined, and results are provided in the next section with
a concluding remarks in the last section.

2. METHODOLOGY

In this section, the whole process of how occluded pedes-
trian is detected and avoided successfully is explained.
The complete process is shown in Fig. 2. Each block of
the process will be explained in subsequent sections, and
finally, brief information about the baseline controllers
used for comparison is presented.

2.1 Environment

Ego vehicle is modeled with NVIDIA PhysX model which
is similar to dynamic bicycle model. Streets and inter-
sections are built in the environment. Position, velocity,
and acceleration information can be extracted from the
environment, and steering, throttle, and brake to control
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Fig. 2. Block Diagram of the Process

Fig. 3. Flow diagram for entropy calculation

the vehicle. Pedestrians with a point mass model are also
added within the environment, with speed and heading
control available for the pedestrian. Their position can be
extracted from the environment. The environment can be
seen in Fig. 1(a).

2.2 Reliability of GPS data

It is assumed that all the pedestrians and vehicles have
GPS receivers and 4G/5G transceivers present. Pedestri-
ans are transmitting their position information to a cloud
server. The cloud server will then send the data to vehicles
in the vicinity of pedestrians to modify their trajectories
to avoid collisions. In Urban scenarios GPS can have high
error Miura et al. (2015). The primary reason for this
error is high-rise buildings that block the transmitter and
receiver’s Line of Sight (LOS). A process is designed to
assess the reliability of the amount of error present in the
data. The process is explained in Fig. 3. In the first step, N
samples are collected. N has to be small so that process can
be executed in real-time. After that, L2 norm of each two-
dimensional sample is calculated. Afterward, a histogram
is calculated as shown in (2). where sj is each GPS sample
collected from a pedestrian. In Fig. 3, it is to be noted
that t seconds is different from T seconds as to evaluate
histogram, we need some samples; therefore, in our work,
T=5t.

P (sj) =
Histogram(sj)∑n
i=1 Histogram(si)

. (2)

Then in the next step entropy is calculated as shown in
(3) .

Fig. 4. Entropy of GPS data from Dept of Cincinnati

H(S) = −
n∑

j=1

P (sj)logbP (sj). (3)

The process was applied on real-time data taken from the
Dept of public health, city of Cincinnati Cincinnati (2021)
with two types of error added random walk and Gaussian
Noise with shifted mean and high variance. Results in
Fig. 4 show that a threshold (approximately 1.89) can be
established to ascertain the variance of the data. Moreover,
data can be rejected if the data has a high variance. The
blue curve is the original data collected, while the green
curve is when Gaussian error X ∼ N (µ = 0, σ2 = 10)
is added into the data to show the effectiveness of the
method. Similarly, in orange curve random walk error
X ∼ N (µ = 0, σ2 = 3N) is added into the original data.
where N = {1, 2, 3, ...}. In Fig. 4 it can be seen that a
threshold of approximately 1.8 can be used, and if the
entropy value is below this threshold, data will be rejected.

2.3 GPS and LIDAR Fusion

To fuse data two step process is followed taken from
Adamey et al. (2013). Scan Matching is performed as
shown in (4)

min
xsm
i

(t)
(
1

2
eTij(t)Preleij(t) +

1

2
eTi (t)Pgpsei(t)). (4)

eij(t) = zij(t)−max(
∥∥xsm

i , xgps
j

∥∥
2
). (5)

ei(t) = xsm
i − xgps

j . (6)

where xsm
i is realigned position of ego vehicle and xgps

j is

the GPS measurement from pedestrian j. While zij(t) is
the relative position measurement from LIDAR where i is
the ego vehicle and j is the jth pedestrian and Prel, Pgps

are covariance matrices.

The benefit of using scan matching is that not only LIDAR
and GPS data is fused, but the error is also corrected. The
next step in the process is Kalman Filtering (KF). The
benefit of using KF is twofold we get the next predicted
state of the pedestrian while the amount of error in the
position is corrected. The model used to predict the next
state of a pedestrian is based on the point mass model.
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Fig. 5. GPS and LIDAR data Fusion

The next challenge in the process is that there are three
possible detections because of communication errors and
local sensor (LIDAR) limitations. The three cases and
how they are handled to create a final list of position
information of all dynamic objects presented are shown
in Fig. 5. A similar approach is followed in all three cases.
First, LIDAR detections are matched with GPS data using
the vicinity rule. The vicinity rule means that in the
Horizontal Alert Level (HAL) of LIDAR detection, it is
assumed that GPS detection will be available and then
processed through KF to get the final predicted positions.
The rest of the data is processed through KF to generate
a final list of detections.

2.4 Finite State Machine based Hierarchical Control

Finite State Machines (FSM) is a mathematical model
through which a finite number of mathematical compu-
tations can be performed through a finite number of inter-
connected states. FSM is widely used to control machines
requiring a sequence of operations. A machine can be
in one of a finite number of states at any given time.
State transitions happen based on indicators from the
environment indicating the machine’s state. Hierarchical
FSM control is utilized to control the vehicle, and at a low-
level PID control is implemented. The FSM controller is
shown in Fig. 6. It has two higher-level states straight and
turn. With a straight node, we have further three states:
follow, brake, emergency brake, and similar three states in
higher node turn but with different indicators to switch
between states. The detail and function of each indicator
are shown in table 1.

Table 1. Flags and their Interpretation

Symbol Definition

FI Intersection Flag
α Distance to start decelerating

Dd2p Distance to closest pedestrian
β Distance to start hard decelerating
θ Distance to start decelerating while turning
ξ Distance to start hard decelerating while turning

2.5 Performance Metrics

To measure the performance of the designed process, three
metrics are used. The first metric consists of using the
vehicle’s lateral position and angle, implying the collision

Fig. 6. Hierarchical Finite State Machine

avoidance measure used to avoid the pedestrian. The
metric is shown in (7)

J1 =
∑
x

xTQx+ uT
1 Ru1. (7)

Q and R are positive definite and positive semi-definite
matrices, respectively. Where x is the state vector with
states, [y θ] where y is the vehicle’s lateral position with
respect to the origin and θ is the angle with respect to
the ego vehicle. Furthermore, u1 is the input vector with
steering angle γ given to the vehicle.

This metric J1 is derived by implementing the observer
model using the lateral position and angle of the dynamic
model as shown in Acarman et al. (2001). J1 is a convex
function and can measure the energy consumed by the ve-
hicle while performing evasive action to avoid the vehicle.

The second metric is based on the distance to the closest
pedestrian maintained by the vehicle at all times and is
shown in (8)

J2 =
1

Dd2p
+ kξ. (8)

Where Dd2p is the distance of the vehicle with the closest
pedestrian and k is a very high gain, and ξ is a binary value
which is one when the vehicle collides with the pedestrian.

This metric is derived such that when the vehicle gets
closer to the pedestrian, it penalizes the metric heavily as
it is inversely proportional to the distance to the vehicle
and gives a very high penalty if the vehicle collides with
the pedestrian. A binary term is added with a high gain to
indicate a collision. The additional binary term is added
because the distance is measured from the vehicle’s center
to the center of the pedestrian. It is to be noted that the
binary term is piece-wise defined, and when a pedestrian is
in close vicinity of the vehicle, it is considered a collision.

Finally, the last metric measures deceleration within the
vehicle when it is performing evasive action to avoid the
vehicle. The metric is shown in (9)

J3 =
∑

h(u2)
TQh(u2). (9)
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where h(u2) is shown in (10) and u2 is the acceleration
of the vehicle when it is performing an evasive action to
avoid the pedestrian

h(u2) = (−1 + sign(u2))u2. (10)

2.6 Baseline Controllers for Comparison

To show a better performance. Three baseline controllers
were used, the first one is vanilla PID control with longitu-
dinal control to avoid dynamic objects, and the other two
have similar architecture as in Fig. 2. Nevertheless, some
blocks were removed. In the second baseline, the block
labeled reliability of GPS data is removed. In the third
baseline controller, both the blocks’ reliability of GPS
data and fusion of LIDAR and GPS functionalities were
removed, and the performances were compared. Vanilla
PID is utilized only in metric J2 because the FSM-based
controller implemented has PID at a low-level hierarchical
control. Consequently, if the proposed method performs
better after removing the blocks, it will perform better if
only vanilla PID is compared. Vanilla PID is used in J2 to
demonstrate that vehicle collides with a pedestrian in the
absence of the proposed controller.

3. RESULTS AND DISCUSSION

The simulation environment used to test the designed pro-
cess is CARLA CARLA (2022) open-source environment.
The scenario is described in Fig. 1 part (a). The pedestrian
moving has a GPS error of X ∼ N (µ = 0, σ2 = 3) and
the pedestrian which is stopped on the sidewalk has an
error of X ∼ N (µ = 0, σ2 = 10). These errors are chosen
because GPS errors in the literature are modeled using the
Gaussian error model Cui and Ge (2003), and variance is
chosen such that it remains under the acceptable range.
This reference Maier and Kleiner (2010) shows that the
error variance is less than 10 meters. The required speed
is 20 m/s because the maximum speed limit in US streets is
45mph, approximately equal to 20 m/s. The vehicle has to
start decelerating if the distance to the pedestrian is less
than seven meters and has to go into hard deceleration
mode if the distance to the closest pedestrian is less than
four meters. The results with each metric are shown in
Fig. 7, Fig. 8 and Fig. 9.

The metrics are measured only when the vehicle takes
action to avoid a collision with the pedestrian. In Metric
J1 that is shown in section 2.5, we can see the results in
Fig. 7. Until 15 seconds, the pedestrian is not detected.
No energy is consumed to avoid the pedestrian. However,
after that, it can be seen that until 40 seconds, baseline
two and baseline three algorithms mentioned in section
2.6 are still consuming energy because the pedestrian
on the sidewalk is reporting its position in the collision
range of the vehicle and our process can reject this data
using entropy metric as described earlier. In the second
figure, Fig. 8 the baseline controller one collides with the
pedestrian while other baselines and our complete process
can avoid the pedestrian. The reason for this is that the
setup provides occluded pedestrian’s position beforehand,
and it has knowledge well before there is a possibility of
a collision, and the vehicle performs preemptive action.
Moreover, the last metric J3 also shows similar results

Fig. 7. State based Cost Metric

Fig. 8. Distance to Pedestrian based Cost Metric

in Fig. 9 because of the same reasons described above.
Vanilla PID is not used in Fig. 9 and Fig. 7 because
low-level control of FSM includes PID, and the proposed
method performs better when scan matching and KF
are implemented within the system. Consequently, if the
system outperforms when only specific features are turned
off, it will certainly perform better than vanilla PID. In
Fig. 8 it is explicitly used to show that the ego vehicle
collides with the pedestrian and which is a safety hazard.
Our process outperforms baseline controllers and can avoid
pedestrians based on the metrics. However, it can be
observed that baseline methods outperform the proposed
method in some instances. This is because the entropy
metric is not always perfect, and sometimes erroneous
information results in extra energy consumption of energy,
but the overall proposed method outperforms baseline
methods. Another noteworthy thing is that having extra
information prevents collision. Suppose such a system,
as described above, had been developed and deployed.
Arizona’s fatal crash of a semi-automated vehicle with a
pedestrian could have been avoided.

4. CONCLUSION

In this paper, a communication setup was provided to
receive position information of the occluded so that col-
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Fig. 9. Deceleration based Cost Metric

lisions can be avoided. This solution is scalable because
the communication protocol and access can be easily ob-
tained as almost every pedestrian carries a GPS sensor
and LTE/4G module in their cell phones. However, cre-
ating a solution in such a way creates a problem if the
information has a significant amount of errors present
within the information, which will reduce vehicle efficiency
significantly. So to solve this problem, an entropy-based
threshold is introduced to solve this problem. Then, the
fusion process of LIDAR data with GPS data to remove
other inaccuracies was introduced. Metrics were presented
to show the performance of the proposed method. Results
show that the proposed method can make HAVs safer for
all the stakeholders present within the environment and
make HAVs more efficient in terms of energy consumption
to evade pedestrians. Since most pedestrians have LTE/4G
modules and GPS devices within their cellular phones,
Hardware Infrastructure is already present. Nothing new
needs to be established. The method proposed is practical
in the real world.

REFERENCES

Acarman, T., Pan, Y., and Ozguner, U. (2001). A con-
trol authority transition system for collision avoidance.
In ITSC 2001. 2001 IEEE Intelligent Transportation
Systems. Proceedings (Cat. No. 01TH8585), 466–471.
IEEE.

Adamey, E., Kurt, A., and Ozgüner, U. (2013). Coop-
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