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Abstract: Combined Energy and Emission Management (CEEM) problems are a class of
optimal control problems that aim to minimize operational costs of (hybrid electric) powertrains
with after-treatment system subject to constraints on emissions imposed by legislation. In this
paper, a parallel-hybrid heavy-duty vehicle with a Variable Turbine Geometry (VTG) and an
Exhaust-Gas Recirculation (EGR) system is considered. The CEEM problem is solved using
Sequential Quadratic Programming (SQP) for which the powertrain and after-treatment models
are approximated as smooth functions. It will be shown that solving the CEEM problem using
SQP is computationally much more efficient when compared to other techniques like dynamic
programming. It will also be shown that most of the benefits from CEEM come from the hybrid
powertrain and not from regulating the VTG and ERG mass flows. Furthermore, zero emission
zones and local emission constraints can also be included without too much effort.
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1. INTRODUCTION

Hybrid vehicles are often associated with a positive impact
on the environment due to the reduction of carbon emis-
sions that they can achieve. At the same time, it is also
possible to reduce the operating cost by driving (partially)
electric. This optimal control of the power split between
the fuel energy and the battery energy is known as energy
management, see, e.g., (Khalik et al., 2018; Pérez et al.,
2006; Onori and Serrao, 2011; Pisu and Rizzoni, 2007).
Even though these energy management strategies achieve
a reduction in carbon emissions, other harmful emissions
such as nitrogen oxides (NOx) and particulate matter
(PM) are ignored in (Khalik et al., 2018; Pérez et al.,
2006; Onori and Serrao, 2011) or dealt with using constant
weighting factors ignoring the dynamic behaviour of after-
treatment systems (Pisu and Rizzoni, 2007). Still, modern
emission legislation forces tailpipe emissions towards near-
zero impact levels. A big problem within these energy
management strategies is that there is an assumption
that after-treatment systems operate under ideal circum-
stances, e.g., a warm start, whereas in the ‘real’ world
these engines operate under cold-start conditions reducing
the efficiency of the after-treatment system, which results
in higher emission levels than expected (Muncrief, 2015).
At the same time, the introduction of Zero-Emission Zones
(ZEZs) will lead to driving electric for extended periods of
time (Holmer et al., 2020; Demirgok et al., 2021), which
results in cooling of the after-treatment system, thereby
increasing emissions locally.

⋆ This work has received financial support from the Horizon 2020
programme of the European Union under the grants ‘Efficient and
environmental friendly LONG distance poweRtrain for heavy dUty
trucks aNd coaches’ (LONGRUN-874972).

In order to deal with these effects, an optimal control
problem can be formulated that aims at minimizing the
operating cost subject to constraints on NOx emissions.
This problem is known as Integrated Emission Manage-
ment (IEM) or Combined Energy and Emission Manage-
ment (CEEM), see (Donkers et al., 2017; Ao et al., 2008;
Willems et al., 2011; Kessels et al., 2010). This CEEM
problem has been solved using Dynamic Programming
(DP) in (Donkers et al., 2017; Ao et al., 2008), Pontyagin’s
Maximum Principle (PMP) and Equivalent Consumption
Minimization Strategies (ECMS) in (Willems et al., 2011;
Kessels et al., 2010). Although all methods yield a solu-
tion to the problem, there are some disadvantages. For
example, the final solution presented in (Donkers et al.,
2017) took 19 hours to compute for a drive cycle of 30
minutes. Even though computation time is not crucial
when used for offline optimization, it shows that DP ap-
proaches do not scale well with horizon length and number
of states/decision variables and cannot be applied to more
complex problems. PMP or ECMS can, in principle, han-
dle the required computational complexity. The problem
with PMP for the CEEM problem is that a Two-Point
Boundary Value Problem has to be solved while the dif-
ferential equation involved for the controller states is typ-
ically unstable. To deal with this instability a pragmatic
approach using heuristic rules is usually taken, resulting
in techniques similar to ECMS, which then results in a
sub-optimal solution.

This paper proposes to solve the CEEM problem using a
static optimization approach. This is done using Sequen-
tial Quadratic Programming (SQP) (Nocedal and Wright,
2006). SQP aims to solve the non-linear CEEM problem by
recursively solving linear constrained quadratic programs.
SQP has already been proven suitable for energy man-
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Fig. 1. Schematic of the considered system architecture.

agement strategies (Khalik et al., 2018) where optimality
was obtained without significant computational effort. In
this paper, we consider a case study of a parallel-hybrid
heavy-duty vehicle with a variable turbine geometry and
an exhaust-gas recirculation system, where the powertrain
and aftertreatment models (which are typically expressed
in lookup tables obtained from measurement data) are ap-
proximated as smooth functions. Simulation results show
that the static optimization approach leads to favorable
computation performance, and can handle ZEZs and local
emission limits without much additional effort.

2. PROBLEM FORMULATION

The goal of this paper is to show that Sequential Quadratic
Programming (SQP) can be used to solve the Com-
bined Energy and Emission Management (CEEM) prob-
lem within a reasonable amount of time. To do so, a case
study of a heavy-duty parallel-hybrid vehicle is consid-
ered. We first discuss the system architecture, powertrain
and aftertreatment models under consideration and, sub-
sequently, formulate the CEEM problem as an optimal
control problem.

2.1 System Architecture

Fig. 1 shows a schematic representation of the considered
architecture. As can be seen from this figure, a heavy-
duty Internal Combustion Engine (ICE) is considered that
works in parallel with an Electric Motor (EM) to provide
the required torque and speed to the wheels. In the system,
an Engine Aftertreatment System (EAS) is also present,
which converts a mixture of the NOx and added Adblue
to nitrogen and water vapour, thereby reducing the NOx
tailpipe emissions.

Both the ICE and EM are seen as quasistatic models with
a direct mapping from inputs to outputs. The model of the
ICE then gives a mapping from the fuel value (fv) which
gives the amount of fuel injected per cylinder per stroke
cycle, and the mass flows ṁvtg and ṁegr, resulting from
the Variable Turbo Geometry (VTG) and Exhaust-Gas
Recirculation (EGR), respectively, to the output power
Pice, the engine-out NOx flow ṁNOx,eo, the exhaust mass
flow ṁexh, the exhaust gas temperature Texh, and the
fuel consumption ṁf . The EM describes the quasistatic
mapping from the power supplied from the battery Ps, to
the resulting power from the EM Pem.
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Fig. 2. World Harmonized Transient Cycle.

The EAS is modelled as a dynamic system, which will
be discussed below. The inputs to this model are the
engine-out NOx flow ṁNOx,eo, exhaust mass flow ṁexh

and exhaust gas temperature Texh, and the outputs are
the tailpipe emissions ṁNOx,tp, and EAS temperature
TEAS. Note that, even though the Adblue consumption
ṁa, is sketched as an input in Fig. 1, it is only considered
to be a cost as Adblue consumption is assumed to be
controlled as a function of engine-out NOx under the
assumption that there is no ammonia storage in the
selective catalytic reduction system of the EAS and the
conversion is stoichiometric.

In this paper, we consider the World Harmonized Tran-
sient Cycle (WHTC) as an engine cycle, which is given
in Fig. 2. When evaluating the NOx emissions on a engine
test setup, usually two cycles are run: one with a cold start
and one with a warm start. Since the cold start is the more
challenging case, we focus on this case in this paper. Note
that the required torque from theWHTC is always positive
and, hence, this paper does not factor in any possibilities
for regenerative braking using the EM. This means that
any achievement in cost reduction is a result of better
thermal management and not of regenerative braking.

2.2 Powertrain Modelling

The required driving power is determined by the WHTC
and is given by

Preq = 2π
60ωτ, (1a)

where ω is the required axle speed in rpm and τ is the
required torque in Nm. The power provided by the ICE
Pice in W, is then given by

Pice =
2π
60ω τice(u, ω), (1b)

where τice(u, ω) is the total torque provided by the ICE
as a nonlinear function of the inputs (fv, ṁvtg, ṁegr) and
engine speed ω. Note that since there is no gearbox present
and the ICE works in parallel with the EM, the speed
of the ICE and EM is fixed by the WHTC. The power
supplied by the battery Ps, is given by

Ps = α2(ω)P
2
em + α1(ω)Pem + α0(ω), (1c)

where Pem is the supplied power by the EM in W and
α2(ω), α1(ω) and α0(ω) are engine-speed-dependent pa-
rameters. The combined power of the ICE and EM should
then provide the total required power, i.e.,

Preq = Pice + Pem. (1d)
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Table 1. Model parameters
Parameter name Symbol Unit Value

Specific heat capacity exhaust gas Cexh JK−1kg−1 1000
Total heat capacity EAS CEAS JK−1 19500
Ambient heat transfer coefficient hamb JK−1s−1 15
Ambient temperature Tamb K 293
Number of cylinders ncyl - 6
Stoichiometric ratio Adblue / NOx ν - 2.007
Crossover temperature Tc K 525
Volume of the EAS VEAS m3 0.033
Mass density of the exhaust gas ρexh kgm−3 1.210

2.3 Battery and Aftertreatment System Dynamics

In this paper, we choose the state and the input vectors as

x = [Es TEAS mNOx,tp]
⊤
, u = [Ps fv ṁvtg ṁegr]

⊤
, (2)

respectively, where Es is the stored energy relative to the
start of the cycle in kWh, TEAS is the temperature of the
EAS in K, mNOx,tp is the total emitted mass of NOx from
the tailpipe in kg, Ps is the power supplied from the battery
in W, fv is the amount of fuel injected in the engine in
mg/inj, ṁvtg is the mass flow resulting from the VTG in
kg/s and ṁegr is the mass flow resulting from the EGR
in kg/s. Following (Donkers et al., 2017; Kessels et al.,
2010), the dynamics can be represented in discrete time as
xk+1 = f(xk, uk, ωk) with

f(x, u, ω) = x(1) − u(1)

x(2)+ k1(Tamb−x(2)) + k2ṁexh(u, ω)
(
Texh(u, ω)−x(2)

)
x(3) + ṁNOx,eo(u, ω)

(
1− ηEAS(x, u, ω)

)
, (3)

in which k1 = hamb/CEAS and k2 = Cexh/CEAS, and
where ṁexh(u, ω) and ṁNOx,eo(u, ω) are the exhaust mass
flow and NOx engine-out mass flow, respectively, in kg/s,
Texh(u, ω) is the exhaust gas temperature in K, and
ηEAS(x, u, ω) is the NOx conversion efficiency. Descriptions
of all constants together with their respective values can
be found in Table 1. Note that x(r) represents the r-th
element of the state vector x and not x to the r-th power.
This notation is also used for the inputs u.

2.4 Function Approximations

In this paper, function approximations are made based on
given lookup tables of a Heavy-Duty ICE. The physical
parameters are given in Table 1 and all other constants
can be found in Table 2. These functions describe the fuel
consumption

ṁf(u, ω) =
ω
60

ncyl

2 u(2) · 10−6, (4)

where ncyl is the number of cylinders present in the ICE,
the exhaust mass flow rate

ṁexh(u, ω) = ṁf (u, ω) + u(3), (5)

i.e., the exhaust gas consists of fuel and the VTG mass
flow, the exhaust gas temperature

Texh(u, ω) =
1
2 ū

⊤Qexhū, (6)

where ū = [ω u(2) u(3) u(4) 1]⊤ and Qexh is a square matrix
whose entries are given Table 2. The engine-out NOx
emissions are given by

ṁNOx,eo(u, ω) = c0 + af(u
(2) − cf)

2 + bf(u
(2) − cf)

+aω(ω−cω)
2+bω(ω−cω)+aeve

(be(u
(4)−ce)+bv(u

(3)−cv)), (7)

Table 2. Parameters used for the function approximations
NOx engine out

af 1.327 · 10−9 bf −8.663 · 10−7 cf 8.244
aω 1.363 · 10−10 bω −2.220 · 10−7 cω 863.1
aev 9.975 · 10−4 be −14.29 ce 0.238
c0 1.881 · 10−4 bv 8.706 cv 0.05

Entries of Qexh for exhaust temperature

q11 −2.796 · 10−4 q22 −3.407 · 10−3 q34 7793
q12 1.773 · 10−3 q23 −3.066 q35 −957.6
q13 −1.561 q24 −5.170 q44 2185
q14 −0.1673 q25 1.815 q45 −2776
q15 1.023 q33 5582 q55 −484.2

Entries of Qice for ICE Torque

q11 −6.988 · 10−3 q22 −3.5070 · 10−2 q34 −1.417 · 104
q12 −8.056 · 10−3 q23 20.5113 q35 −9355
q13 9.635 q24 11.5247 q44 −2.560 · 104
q14 13.90 q25 19.15 q45 −1.608 · 104
q15 7.043 q33 −2.009 · 104 q55 −3592

EAS efficiency

s1 0.04 w1 0.5061
s2 0.03 w2 -0.3851

the torque provided by the ICE is given by

τice(u, ω) =
1
2 ū

⊤Qiceū, (8)

where Qice is a square matrix whose entries are again given
in Table 2, the efficiency of the EAS is given by

ηEAS(x, u, ω) =
1
2 + 1

π tan
−1

(
s1(x

(2) − Tc)
)

+ w1e
(hṁexh(u,ω)−0.5)w2

(
1
2−

1
π tan

−1(s2(x
(2)−Tc))

)
, (9)

with h = 3600·10−4

VEASρexh
, and where TC is the so called crossover

temperature, VEAS is the volume of the EAS and ρexh
is the mass density of the exhaust gas, and the Adblue
consumption is given by

ṁa(x, u, ω) = ν ηEAS(x, u, ω) ṁNOx,eo(u, ω), (10)

where ν is the stoichiometric ratio between Adblue and
NOx. All the function approximations leads to an maxi-
mum full-scale error of less than 5%.

2.5 Optimal Control Problem Formulation

After obtaining all the models, the CEEM optimal control
problem can be formulated. The goal of the CEEM prob-
lem is to minimize the cumulative fuel consumption, i.e.,

J =
∑
k∈K

ṁf(uk, ω), (11a)

where K = {0, . . . ,K − 1} is the set containing all time
steps, where K is the length of the cycle, subject to

x
(1)
0 − x

(1)
K ≤ 0, (11b)

which states that the vehicle is required to be, at least,
charge sustaining over a given drive cycle (we do not
consider battery capacity constraints), and to

x
(3)
K ≤ CNOx, (11c)

where CNOx = MNOxEd · 10−3 poses a limit on the total
tailpipe NOx emissions, in which MNOx is the constraint
on NOx emissions posed by legislation in g/kWh and Ed

is the total required energy/work in kWh, and to

Pice,k + Pem,k ≥ Preq,k, (11d)

for all k ∈ K, which describes the power balance between
the ICE and the EM, and to

u(ωk) ≤ uk ≤ u(ωk), (11e)
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for all k ∈ K, which bounds the available inputs based on
the engine-speed, and to the non-linear dynamics

xk+1 = f(xk, uk, ωk), (11f)

which are already given in (3).

2.6 Extensions

Several extensions can be made to the problem defined
above. Some possible extensions are discussed next.

Zero-Emission Zones: In the near future, ZEZs will be
introduced, in which the ICE is required to be switched
off and all required power needs to be supplied by the
EM. This can be incorporated into the problem above by
adding the constraint Pice,k = 0 for all k ∈ KZEZ, which
implies Pem,k = Preq,k, where KZEZ contains all time steps
in the ZEZ.

Local Emission Constraints: Besides ZEZ, also in-service
conformity is required, which states that emissions also
need to be constrained on intervals within the drive cycle.
To constrain these emissions, an additional constraint can
be added

x
(3)
b − x(3)

a ≤ CNOx,zone, (12)

where a and b denote the time steps at the beginning and
the end of a given zone, respectively, where these zones
could be determined by a certain amount of energy/work
the powertrain requests.

Adblue Cost: Since besides fuel, the vehicle also con-
sumes Adblue, the cost function (11a) can be altered to

J =
∑
k∈K

πfṁf(uk) + πaṁa(xk, uk), (13)

where πf and πa are the fuel and Adblue price in €/kg re-
spectively. The addition of the Adblue consumption causes
the state xk, to be present in the cost function, which
increases the complexity of the optimization problem.

3. SQP APPROACH

In this section, the Sequential Quadratic Programming
(SQP) algorithm that is used to solve the optimal control
problem as given in (11) is presented. SQP aims to solve
non-linear optimization problems by recursively solving
linearly constrained quadratic programs, which is done
by approximating the objective function quadratically and
the constraints linearly. At the end of this section, we will
reflect on the termination condition and the convergence
properties of SQP.

3.1 Formulation of the SQP Problem

The problem given in (11) can be represented by the
optimal control problem

min
xk,uk

∑
k∈K

g(uk, ωk) (14a)

s.t. xk+1 = f(xk, uk, ωk) (14b)

h(xk, uk, ωk) ⩽ 0. (14c)

Note that for the problem given in (11), the objective
function is actually linear. This means that the only non-
linearities are within the dynamics and the inequality

constraints. SQP works by recursively solving the optimal
control problem

{xi+1
k , ui+1

k }k∈K =

arg min
xk,uk

∑
k∈K

1
2 (uk−ui

k)
⊤R(uk−ui

k)+g(uk, ωk), (15a)

subject to the linearized dynamics

xk+1 = f(xi
k, u

i
k, ωk) +∇f(xi

k, u
i
k, ωk)

[
xk − xi

k

uk − ui
k

]
, (15b)

and to the linearized inequality constraints

h(xi
k, u

i
k, ωk) +∇h(xi

k, u
i
k, ωk)

[
xk − xi

k

uk − ui
k

]
⩽ 0, (15c)

where i denotes the current iteration of the algorithm and
the matrix R represents the regularization term, which is
used to help the algorithm converge in a quicker and more
stable manner. The matrix R is chosen as a nonnegative
diagonal matrix, which penalizes the difference in the cur-
rent en next solution. This leads to better convergence of
the SQP algorithm. Moreover, it prevents nonconvexity of
the cost function for the case where Adblue consumption
is added, i.e., when (13) is considered. By choosing the
regularization matrix R sufficiently large, the QP subprob-
lem becomes convex. When the algorithm converges to a
solution, e.g. xi

k = xi+1
k = x∗ and ui

k = ui+1
k = u∗, the

solution of the QP subproblem (15) is equal to the solution
of the original problem (14).

To arrive at a form for (15) that can be implemented,
e.g., in Matlab, we will introduce a compact notation for
(15b), which allows for eliminating the state from (15c).
This process is known as ‘condensing’ (Maciejowski, 2001).
This process uses a prediction model of the form

X = Φi + ΓiU, (16)

where X = [x⊤
0 x⊤

1 . . . x⊤
K ]⊤ and U = [u⊤

0 u⊤
1 . . . u⊤

K−1]
⊤,

and where Φi = (Ai)−1Ci and Γi = (Ai)−1Bi with

AiX = BiU + Ci, (17a)

where

Ai=


I 0 . . . 0

−Ai
0 I 0

...
...

. . .
. . . 0

0 . . . −Ai
K−1 I

, Bi=


0 . . . 0

Bi
0

. . .
...

...
. . . 0

0 . . . Bi
K−1

, Ci=


x0

Ci
0
...

Ci
K−1

, (17b)
where Ai

k = ∇xf(x
i
k, u

i
k, ωk), B

i
k = ∇uf(x

i
k, u

i
k, ωk) and

Ci
k = f(xi

k, u
i
k, ωk) − ∇f(xi

k, u
i
k, ωk)

[
x
i
k

u
i
k

]
follow from the

linearized dynamics (15b). Now substituting (16) in (15c)
then yields a static optimization problem given by

U i+1 = arg min
U

1
2U

⊤QU +GiU (18a)

s.t. HiU ≤ bi, (18b)

where Q = diag(R, . . . , R), and

Gi = [0 α(ω0) 0 0 . . . 0 α(ωK−1) 0 0]− U iQ, (19a)

with α(ωk) =
ωk

60
ncyl

2 · 10−6, and where

Hi=



H
i
charge

H
i
NOx

H
i
pwr,0

.
.
.

H
i
pwr,K−1

H
i
bounds,0

.
. .

H
i
bnds,K−1


, bi=



b
i
charge

b
i
NOx

b
i
pwr,0

.

.

.

b
i
pwr,K−1

b
i
bnds,0

.

.

.

b
i
bnds,K−1


, (19b)
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give the linear constraints resulting from (15c) where

Hi
charge = [1 0 0]

[
I3 03×3(K−2) −I3

]
Γi, (20a)

bicharge = [1 0 0]
[
−I3 03×3(K−2) I3

]
Φi, (20b)

represent the charge sustaining constraint,

Hi
NOx = [0 0 1]

[
03×3(K−1) I3

]
Γi, (20c)

biNOx = CNOx − [0 0 1]
[
03×3(K−1) I3

]
Φi, (20d)

represent the constraint on NOx emissions,

Hi
pwr,k = −∇(Pice(u

i
k) + Pem(u

i
k)), (20e)

bipwr,k = −∇(Pice(u
i
k) + Pem(u

i
k))u

i
k

+ Pice(u
i
k) + Pem(u

i
k)− Preq,k, (20f)

give the linear approximation of the power-balance con-
straint, and

Hi
bnds,k =

[
I4
−I4

]
, bibnds,k =

[
u(ωk)
−u(ωk)

]
(20g)

give the bounds on the inputs. The subproblem in (18) can
then be solved by any QP solver. We will use IBM CPLEX
in this paper.

3.2 Convergence and Termination

Due to the iterative nature of the SQP approach, as (14)
is solved repeatedly, convergence needs to be monitored
and a criterion for termination needs to be formulated. A
typical approach is to employ a merit function of the form

J i =
∑
k∈K

g(ui
k, ωk) + µmax{h(xi

k, u
i
k, ωk), 0}, (21)

where µ > 0 is a constant weighting factor. The merit
function consists of is the original cost function with an
added penalty for any violated constraints. This is neces-
sary as intermediate solutions (of the linearized problem)
can be infeasible when evaluated on the original problem.
The merit function (21) expresses this by returning a high
cost compared to feasible solutions, thereby avoiding con-
vergence to an infeasible solution. It should be noted that
only the non-linear constraints need to be included in the
merit function since the linear constraints are not altered
in the QP subproblem. The SQP algorithm is terminated
when |J i+1−J i| ≤ ∆tol, where ∆tol is a specified tolerance.

When the SQP algorithm converges, it is guaranteed that
the resulting solution is a local optimum (Nocedal and
Wright, 2006). Convergence to the global solution, how-
ever, cannot be guaranteed because the CEEM problem is
not a convex optimization problem. To assess whether the
SQP gets stuck in a local minimum, we initialize the prob-
lem with several different initial conditions. Even though a
global solution cannot be guaranteed, we have encountered
only a few cases where different initial condition converged
to different final solutions and we will reflect on this in the
next section.

4. SIMULATION RESULTS

In this section, the results of the simulation study for
the CEEM problem as given in Section 2 are presented.
First, the convergence of the SQP algorithm is presented
and discussed after which the optimal solution is given
and the tradeoff between fuel cost and NOx emissions
is shown, where it should again be noted that the drive
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Fig. 3. The cost, penalty and the merit function using R.

cycle has only positive torques, meaning that the tradeoff
is a consequence of thermal management and not of
regenerative braking. Lastly, the extensions to the problem
regarding local emission zones and Adblue consumption
are presented, where in the latter case the combination of
fuel cost and AdBlue cost is considered.

4.1 Convergence and Tuning

Fig. 3 shows the convergence of the Sequential Quadratic
Programming (SQP) algorithm over a given number of
iterations when the regularization matrix R is set as

R = diag(6.67 · 10−14, 2.50 · 10−7, 2.083, 4.20). (22)

These values have been obtained by starting with the
reciprokal of maxω{ū(i)(ω)} and then iteratively scaling
the elements one by one until a satisfactory convergence
rate was achieved. From Fig. 3 it can be seen that the
merit function (21) converges quickly to a low value in
25 iterations, after which it continues to decrease slowly
until the desired tolerance is achieved. It can be seen from
the evolution of the penalty on the constraints (i.e., the
second term in (21)) in Fig. 3 that the solutions of the first
iterations are infeasible for the nonlinear optimal control
problem, and after these become feasible, the cost function
(i.e., the first term in (21)) decreases further. Eventually
the algorithm converges after 52 iterations which took 309
seconds. On average, iterations take 6.6 seconds and the
algorithm converges within 100 iterations and, hence, the
worst-case total required time is estimated to be around 11
minutes, which is much lower than the computation times
reported in (Donkers et al., 2017) to solve a very similar
problem.

4.2 Optimal Solution

Fig. 4 shows the optimal solution for the CEEM problem
obtained using the SQP problem for MNOx = 0.4 g/kWh.
From Fig. 4a, it can be seen that the optimal strategy is
to instantly charge the battery by providing more power
than required by the ICE and storing this energy in the
battery using the EM. Even though this temporarily emits
more NOx, see Fig. 4c, it also does heat up the EAS,
see Fig. 4b, which increases its efficiency. This results in
severely reduced NOx emissions from the tailpipe after the
EAS reaches a temperature greater than 550 K. The stored
energy in the battery is then used to operate the ICE in a
(close to) optimal operating point, whilst keeping the EAS
on a desired temperature. The mentioned initial solution,
i.e., the solution at the first iteration of the SQP, is the
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Fig. 4. Optimal solution for MNOx = 0.4g/kWh.
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Fig. 5. Cost/NOx trade-off for three different cases.

solution obtained from running the algorithm without an
emission constraint, e.g., the most fuel efficient solution.

Since multiple simulations have been done for different
values of MNOx, a trade-off curve can be made showing the
increase in cost for lower NOx emissions, see Fig. 5. This
curve has also been generated for the case that the inputs
of the VTG and EGR are chosen such that the ICE is
operating at maximum efficiency, and the CEEM strategy
can only choose the EM power (EM only), and for the case
where the EM cannot be used, which corresponds to the
case studied in (Donkers et al., 2017) (ICE only). From
Fig. 5, it can be clearly seen that the optimal solution
relies heavily on the choice of EM power and less on
choosing the VTG and ERG mass flows. This is due to the
biggest impact being made by increasing the combination
of exhaust gas temperature and mass flow, which can be
done relatively cheap using the EM and the battery. This is
because charging the battery requires a higher ICE power,
which generates more heat, which is partially transferred
to the EAS leading to an increased EAS temperature.
Without the use of the EM and for low NOx tailpipe
emissions, EAS temperature is created by producing more
power than required for the drive cycle, as (11d) is solved
as an inequality, meaning that energy is lost and, hence,
results in higher fuel costs.

To assess whether the obtained solutions are global solu-
tion (which cannot be guaranteed as the problem is non-
convex), different initial conditions are used to see if they
converge to the same solution. In the ICE-only case, multi-
ple initial solutions sometimes converge to different (local)
minima. As indicated in Fig. 5, for MNOx ∈ [0.6, 0.73],
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Fig. 6. Optimal solution for MNOx = 0.4g/kWh for a
double WHTC cycle and where the ICE is switched
off from t = 1800 to t = 2150.

multiple local minima can be found. Note that this effect
was only observed for the ‘ICE only’ case for the specified
MNOx values. The results from Fig. 5 were obtained by
using the solution of a previous run with a given MNOx

value as the initial solution for the next run. By doing this
for both increasing and decreasing values of MNOx, the
dotted lines in Fig. 5 are obtained. Hence, for this case,
local optimal solutions exist and the initial condition of
SQP should be carefully chosen.

4.3 Extensions

Let us now show the results of the proposed extensions
in Section 2.6. To demonstrate the consequence of a ZEZ
and local emission constraints, a double WHTC cycle is
considered, where is it assumed that the ICE has to be
switched off and the EM provides all the required power
from t = 1800 [s] to t = 2150 [s]. The optimal solution
returned by the SQP algorithm is shown in Fig. 6, where
the vertical black lines denote the section where the ICE is
switched off. It can be seen that no emissions are generated
in the time interval from t = 1800 [s] to t = 2150 [s],
but, besides that, the optimal solution looks very similar
to the optimal solution of the baseline case. As before,
the EAS is heated by the charging of the battery, see
Fig. 6a and Fig. 6b. It can also be seen that the EAS
temperature plummets when driving in the ZEZ, which
results in higher NOx emissions immediately outside of the
ZEZ, see Fig. 6c. This effect is even better visible when the
NOx emissions are given for smaller zones in Fig. 7, the
blue lines, where it is clear that the majority of the emitted
mass of NOx is emitted when the EAS is (relatively) cold.

To prevent high NOx emissions when the EAS is cold,
constraints can be added to individual zones, see (12).
The length of each zone is chosen so that the cumulative
power request in all zones are equal (where the zone
inside the ZEZ and the one just after are combined).
These constraints are indicated using black dotted lines
and the optimal solution in presence of these constraints
is shown in red in Fig. 7. It can be observed that the
NOx emissions from the ‘cold’ zones are spread out more
towards neighbouring zones. It does, however, need to be
noted that it was not found possible to decrease the cold
zones much further than the indicated values in Fig. 7. As
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a result of these local NOx emission constraints, the fuel
cost increases by 2.8% for this specific simulation example.

So far, only fuel cost has been considered in the CEEM
problem, see (11). While fuel cost is not the only operating
cost, the optimization problem was also run with the
inclusion of Adblue to the objective function, see (13).
Table 3 shows a comparison of the total costs for the cases
with and without incorporating AdBlue consumption in
the objective function. The prices of fuel and AdBlue are
also included in the table and it should be noted that
we do not consider a ZEZ nor local emission constraints
here. It can be seen from Table 3 that the operation
cost is hardly reduced by adding AdBlue consumption
to the objective function as a decrease in cost of only
0.005% is observed. At the same time, the problem does
become more complex since adding Adblue to the problem
results in the state occurring in the cost function. This
increases the computation times for the QP solver severely
resulting in the average time required to solve the CEEM
problem going up to three hours which is an entire order
of magnitude larger than for the case where AdBlue cost
is not considered, yet still faster than DP, as was done in
(Donkers et al., 2017).

5. CONCLUSION

In this paper, a Combined Energy and Emission Man-
agement (CEEM) problem with cold-start conditions over
the World Harmonized Transient Cycle (WHTC) was
solved using a Sequential Quadratic Programming (SQP)
algorithm. This solution was obtained using quasistatic
powertrain models and a dynamic after-treatment model,
where several lookup-tables have been approximated with
smooth functions, resulting in a non-linear discrete-time
optimal control problem. It has been shown that SQP is a
viable method for solving the CEEM problem since the so-
lution is obtained in a reasonable amount of computation
time. Extending the problem with a zero-emission zone,
local emission constraints and the addition of AdBlue costs
also does not cause any problems to the convergence of the
algorithm.

Table 3. Comparison in cost for the optimal solution with and
without Adblue optimization.

MNOx = 0.6g/kWh Without Adblue With Adblue

Fuel Cost (€1.617 per kg) €11.53014 €11.53199
Adblue Cost (€0.687 per kg) € 0.20319 € 0.20077
Total Cost €11.73334 €11.73276

The simulation results show the well-known trade off
between the operating cost of the vehicle and the amount
of nitrogen oxides (NOx) emitted from the tailpipe. By
comparing the NOx-cost tradeoff of the three considered
cases, it can be concluded that most of the benefits
of CEEM come from the electric machine and much
less is achieved with the regulation of the mass flows
within the internal combustion engine (ICE). Finally,
adding AdBlue costs in the problem formulation leads
to 0.005% lower costs, whilst it does add significantly
to the complexity of the problem. These topics should
be taken into consideration when going to a real-time
implementable solution to the problem.
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