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Abstract: State of charge (SoC) estimation is one of the most important functions for battery management 

systems (BMSs). Due to the complex electrochemical characteristics of Lithium-ion batteries (LIBs), 

accurate SoC estimation remain challenges. To take full advantage of the widely used model-based methods 

and data-driven methods, an extreme learning machine-extended Kalman filter (ELM-EKF)-based method 

is proposed for SoC estimation in this paper. The ELM is utilized to establish an accurate LIBs model first. 

Then, the trained ELM model is combined with the EKF algorithm for SoC estimation. The proposed ELM-

EKF-based SoC estimation method is validated and compared with the traditional equivalent circuit model-

EKF (ECM-EKF)-based method under Federal Urban Driving Schedule (FUDS) driving cycles at three 

different temperatures. The results prove that the ELM model have better voltage-tracking capability than 

the ECM model while the ELM-EKF-based SoC estimation algorithm can achieve higher estimation 

accuracy than the ECM-EKF-based method. 

Keywords: Extreme Learning Machine (ELM), Extended Kalman Filter (EKF), Lithium-ion Battery 

(LIB), State of Charge (SoC) 

1. INTRODUCTION 

Due to the advantages of high energy density and long lifespan, 

Lithium-ion Batteries (LIBs) have become the main energy 

storage medium for electric vehicles (EVs). In order to 

maintain a stable, safe, and efficient operating condition for 

battery system, it is critical to develop a battery management 

system (BMS) whose functions consist of modeling and state 

estimation, charge and discharge control, thermal management, 

fault diagnosis and communication with other controllers 

(Wang et al., 2020). Amongst these functions, state estimation 

is the most fundamental and crucial one, especially the State 

of Charge (SoC) estimation. Although SoC serves the same 

function for EVs as the fuel gauge for petrol-fuel vehicles, it is 

not a directly measurable value which make it a difficult task 

for actual applications (Wang et al., 2021).  

1.1 Review of SoC Estimation Methods 

In the past few decades, numerous researchers have been 

dedicating to developing advanced SoC estimation methods. 

So far, the existing SoC estimation methods can be roughly 

divided into four categories: look-up table-based, Coulomb 

counting, model-based, and data-driven based methods (Xiong 

et al., 2017). The look-up table-based methods rely on pre-

determined mapping relationship between different 

parameters and SoC. The main drawback is that accurate 

online measurements of such parameters have great challenge. 

Coulomb counting method is widely used in practical 

applications since it is simply based on the integration of 

current with respect to time. However, initial SoC error, 

capacity error, and accumulative error are three main error 

sources to influence its accuracy. The model-based method 

draws great popularity for its advantages of high accuracy, 

self-corrective ability, and relatively simplicity in on-board 

BMSs. The application procedures of model-based methods 

usually consist of two parts, namely the battery modeling and 

SoC estimation algorithms implementation (Shrivastava et al., 

2019). As the name suggests, the performance of the model-

based methods highly relies on an accurate battery model that 

can reflect the electrochemical characteristic of LIBs. Typical 

battery models include electrochemical model (EM), 

equivalent circuit model (ECM), and fractional order model 

(FOM). Compared with other battery models, ECM can 

maintain a trade-off between model complexity and accuracy 

(Saldaña et al., 2019), thus it is the most used one for model-

based SoC estimation methods. As for the SoC estimation 

algorithms, different filter algorithms, such as Gaussian 

process-based filter methods including extended Kalman filter 

(EKF) (Ren et al., 2021), unscented Kalman filter (UKF) 

(Zhang et al., 2022), sigma-point Kalman filter (SPKF) (Farhaj 

et al., 2021), and probability-based filter algorithms including 

particle filter (PF) (Zhengxin et al., 2021), unscented particle 

filter (UPF) (Wang and Chen, 2020), and cubature particle 

filter (CPE) (Ling et al., 2021), have been widely used. To 

Preprints, 10th IFAC International Symposium on
Advances in Automotive Control
Columbus, Ohio, USA, August 28-30, 2022

© 2022 the authors. Accepted by IFAC for publication
under a Creative Commons License CC-BY-NC-ND

197



develop an accurate battery model, it is necessary to conduct 

various battery tests and identify the parameters of the battery 

model which are usually time-consuming (Ren et al., 2021). 

The data-driven methods for SoC estimation have become a 

research hotspot in recent years since they usually consider the 

LIB as a black box and use various machine learning (ML) 

methods to map the non-linear relationship between the 

measured signals and SoC. Some popular ML methods, such 

as artificial neural network (ANN) (Hannan et al., 2018), deep 

learning (DL) (Savargaonkar and Chehade, 2020), support 

vector machine (SVM) (Li et al., 2020), and Gaussian process 

regression (GPR) (Deng et al., 2020) have been applied for 

SoC estimation. However, the main disadvantage of the data-

driven methods is that these algorithms are sensitive to the 

quality of the training dataset and may encounter overfitting or 

underfitting problems easily. In addition, the on-board 

implementation of data-driven methods for SoC estimation is 

still a challenge for current stage.  

1.2 Motivation and Key Contributions 

Although considerable work has been carried out for accurate 

SoC estimation, there are several limitations in the existing 

methods. The look-up table based, and Coulomb counting 

methods are not suitable for long-term practical applications. 

The model-based methods need considerable time to build an 

accurate battery model while the data-driven methods may 

easily encounter overfitting and underfitting problems. To take 

full advantage of both model-based and data-driven methods, 

this paper proposes a hybrid strategy for SoC estimation which 

first uses the extreme learning machine (ELM) to build the 

battery model. Then, the output of the ELM model is employed 

as an input of the EKF-based algorithm to estimate SoC. To 

demonstrate the superiority of the proposed method, the 

conventional model-based method which combine the 

Thevenin model with EKF is built for comparison. These two 

algorithms are validated and compared under dynamic driving 

cycles at three different temperatures.  

1.3 Organization of This Paper 

The remainder of this paper is organized as follows: section 2 

introduces the experimental setups; section 3 provides the 

basic theoretical knowledge about the definition of SoC, the 

ELM model, the Thevenin model and the EKF algorithm; the 

results and comparison are analyzed in section 4; finally, some 

conclusions are given in section 5.  

2. EXPERIMENT SETUPS 

2.1 Experimental Platform 

The experimental platform mainly consists of a thermal 

temperature chamber, a battery test system (Neware BTS-4002) 

and a host computer for battery test control and data 

acquisition with 1 s interval. The sampled batteries are 18650 

cylindrical graphite LiNi1/3Co1/3Mn1/3O2 batteries with a 

nominal capacity 2.5Ah and nominal voltage 3.6V. 

2.1 Experimental Schedule 

To identify the parameters of the Thevenin model, the open 

circuit voltage (OCV) and hybrid power pulse characterization 

(HPPC) tests are necessary to conduct. The OCV is a critical 

parameter for ECM-based SoC estimation algorithms. It 

represents the terminal voltage of the LIB when it reaches the 

thermodynamic equilibrium state. The typical steps of OCV 

test are as follows: (a) The battery is fully charged by means 

of the constant current–constant voltage (CC-CV) method at 

the ambient temperature. (b) Rest the battery inside the thermal 

chamber for 2 hours to reach the thermodynamic equilibrium 

state and the terminal voltage is considered as the OCV at 100% 

SoC. (c) The battery is discharged under a constant current 

with a 1/25-C rate and the terminal voltage is measured every 

5% SoC interval. (d) Finally, the terminal voltage reaches the 

cutoff voltage of 2.5V and then the battery is rested for 2 hours. 

(e) The battery is charged under a constant current with a 1/25-

C rate and the terminal voltage is measured every 5% SoC 

interval. (f) Finally, when the terminal voltage reaches 4.2V, 

the average value of charge and discharge terminal voltage is 

regarded as the OCV since the effects of hysteresis and Ohmic 

resistance are reduced by the averaging. For the HPPC test, the 

battery is first fully charged using the CC-CV method at the 

ambient temperature and then rested inside the thermal 

chamber at the tested temperatures (10°C, 30°C and 50°C) for 

2 hours to reach the thermodynamic equilibrium state. As 

shown in Fig, 1, the current curve of one HPPC sequence 

consists of a 30-s constant current discharge, and then a 40-s 

resting interval followed by a 10-s charge. The battery is 

discharged with a 1/3-C rate to reach the 5% depth of discharge 

to the next SoC point and then rested for 1 hour. Repeat the 

above steps 20 times to cover the whole SoC region.  

 

Fig. 1. The current and voltage curves of one HPPC sequence 

To validate the battery model and SoC estimation accuracy 

under dynamic operating conditions, the Federal Urban 

Driving Schedule (FUDS) test (Anon, 1996), shown in Fig. 2, 

is conducted at three various temperatures.  

 

Fig. 2. The voltage and current curves of one FUDS cycle 

3. THEORETICAL BACKGROUND 

2.1 Definition of State of Charge 

SoC represents the remaining amount of available capacity of 

LIBs which can be expressed as follows 
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𝑆𝑂𝐶(𝑡) =
𝐶𝑟

𝐶𝑚
= 𝑆𝑂𝐶(𝑡0) − ∫  

𝑡

𝑡0

𝐼(𝑡)𝜂

𝐶𝑚
𝑑𝑡               (1) 

where 𝐶𝑟  is the remaining capacity and 𝐶𝑚  is the maximum 

available capacity that a LIB can store, 𝑆𝑂𝐶(𝑡0) represents the 

initial value, 𝜂 is the coulombic efficiency and 𝐼(𝑡) stands for 

the current.  

2.2 Extreme Learning Machine 

ELM is a kind of feed forward neural network (FFNN). 

Compared with other kinds of FFNN, such as back 

propagation neural network (BPNN) and radial basic function 

neural network (RBFNN), ELM has several advantages such 

as lower computation complexity, faster convergence speed, 

simpler learning process and good generalization performance 

(Ding et al., 2015). Thus, ELM is selected in this paper to build 

the battery model. The structure of ELM is shown in Fig. 3 

which contains one input layer, one hidden layer and one 

output layer. Unlike the BPNN which uses error 

backpropagation algorithm to train the NN, the learning 

process of ELM is much simpler which make its superiorities. 

Considering a dataset defined as 𝐷 = {(𝑥𝑗 , 𝑦𝑗) ∣ 𝑥𝑗 ∈ 𝑅𝑛, 𝑦𝑗 ∈

𝑅𝑚 , 𝑗 = 1, … , 𝑁} , the learning process can be divided into 

three steps as follows. 

(1) Step 1: The input features are selected arbitrarily. Then 

the input weight vector and hidden layer bias, denoted as 

𝑎𝑖 = [𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛]𝑇 and 𝑏𝑖  respectively, are assigned 

randomly where 𝑖 stands for the ith hidden layer neuron. 

The number of hidden neurons is determined flexibly to 

achieve acceptable accuracy. 

(2) Step 2: Use the feed forward propagation algorithm to 

calculate the output of the ELM. The expressions are as 

follows 

∑  

𝐿

𝑖=1

𝛽𝑖𝑓(𝑎𝑖 , 𝑏𝑖 , 𝑥𝑗) = 𝑦𝑗 , 𝑗 = 1, … , 𝑁              (2) 

where 𝛽𝑖 = [𝛽𝑖1, 𝛽𝑖2, … , 𝛽𝑖𝑛]𝑇  represents output weight 

connecting the ith hidden neuron and output neuron. 

𝑓() is the activation function of the hidden layer neurons 

and the widely used sigmoid function is used in this paper.   

𝑓(𝑎𝑖 , 𝑏𝑖 , 𝑥𝑗) = (1 + 𝑒−(𝑎𝑖⋅𝑥𝑗+𝑏𝑖))
−1

, 𝑖 = 1, … , 𝐿   (3) 

According to (2), it can be expressed as  

𝐻𝛽 = 𝑌                                         (4) 

where 𝐻 is the hidden layer matrix. 

𝐻 = [
𝐺(𝑎1, 𝑏1, 𝑥1) … 𝐺(𝑎𝐿 , 𝑏𝐿 , 𝑥1)

⋮ … ⋮
𝐺(𝑎1, 𝑏1, 𝑥𝑁) … 𝐺(𝑎𝐿 , 𝑏𝐿 , 𝑥𝑁)

]

𝑁×𝐿

𝛽 = [𝛽1, … , 𝛽𝐿]𝑇 , and 𝑌 = [𝑦1, … , 𝑦𝑁]𝑇 .

  

(3) Step 3: The output weights can be analytically 

determined through the generalized inverse operation of 

the hidden layer matrix. Therefore, the least square 

solution is used to calculate the output weight as follows: 

𝛽 = 𝐻+ ∙ 𝑌 = (𝐻𝑇𝐻)−1𝐻𝑇 ∙ 𝑌                  (5) 

where 𝐻+ the Moore-Penrose generalized invers of H. 

It is obvious from the above steps that there is no iteration in 

the training phase of ELM since it randomly assigns the input 

weights and hidden layer bias as well as utilizes the Moore-

Penrose generalized inverse of pseudoinverse matrix to train 

the model.  

 

Fig. 3. The structure of ELM  

2.2 Extreme Learning Machine Model  

Since ELM can map non-linear relationship using input-output 

samples, thus in this paper, the ELM is used to build a battery 

model where the 𝑆𝑂𝐶(𝑘) and 𝐼(𝑘) measured at time step 𝑘 

together with the battery terminal voltage 𝑉(𝑘 − 1) at time 

step 𝑘 − 1  are chosen as inputs while the battery terminal 

voltage 𝑉(𝑘) at time step 𝑘 is selected as output. Therefore, 

the expression is shown as follows 

𝑉(𝑘) = 𝑓(𝑉(𝑘 − 1), 𝐼(𝑘), 𝑆𝑂𝐶(𝑘))                 (6) 

where 𝑓 is the mapping function obtained by ELM. According 

to section 2.1, 𝑥𝑗  equals [𝑉(𝑘 − 1), 𝐼(𝑘), SoC (𝑘)]𝑇  and 𝑦𝑗 

equals 𝑉(𝑘) where 𝑛 and 𝑚 equal to 3 and 1 respectively. In 

addition, the number of hidden neurons is selected as 30 and 

the training dataset is collected form FUDS test at 30°C while 

the validation datasets are collected from FUDS test at 10 and 

50°C.  

2.3 Equivalent Circuit Model  

To demonstrate the superiority of the ELM model, the state of 

art Thevenin model shown in Fig. 4 is built for comparison. 

The mathematical equations are as follows. 

𝑈𝑡 = 𝑈𝑜𝑐 − 𝑈𝑝 − 𝑅0𝐼                           (7) 

𝑈𝑃
̅̅̅̅ = −

𝑈𝑃

𝐶𝑃𝑅𝑃
+

𝐼

𝐶𝑃
                               (8) 

where 𝑈𝑜𝑐 , 𝑅0, 𝑅𝑃, 𝐶𝑃, 𝑈𝑡 , 𝐼, and 𝑈𝑃 represent the OCV, ohmic 

resistance, polarization resistance, polarization capacitance, 

terminal voltage, load current, and voltage across the parallel 

RC network respectively. 
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Fig. 4. The Thevenin model 

According to the OCV and HPPC tests, the parameters 

identification results are depicted in Fig. 5. It can be observed 

that all parameters are sensitive to SoC. Specifically, there is a 

monotonically increasing relationship between OCV and SoC. 

But for  𝑅0, in the low or high SoC region, the value of 𝑅0 is 

much higher indicating poor discharging performance. Same 

phenomenon can be found in 𝑅𝑃 and 𝐶𝑃 

 

Fig. 5. The parameters identification results of Thevenin 

model 

2.4 Extended Kalman Filter for SoC estimation  

The EKF algorithm utilizes the input and output data to 

recursively optimize the system state. The discretized state-

space equations of a nonlinear system can be described as 

follows: 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘                      (9) 

𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘) + 𝑣𝑘                          (10) 

where 𝑥𝑘 ∈ 𝑅𝑛 is the state vector, 𝑢𝑘 is the input vector, 𝑦𝑘 ∈
𝑅𝑚  is the measured output, 𝑤𝑘  and 𝑣𝑘  are the process and 

measurement noises respectively which both are assumed to 

be mutually uncorrelated white Gaussian random processes 

with zero mean; 𝑓(𝑥𝑘, 𝑢𝑘)  is the nonlinear state transition 

function and 𝑔(𝑥𝑘 , 𝑢𝑘) is the nonlinear measurement function. 

The recursive process of EKF algorithm is as follows. 

(1) Initialization  

�̂�0
+ = 𝐸(𝑥0), 𝑃0

+ = 𝐸[(𝑥0 − �̂�0)(𝑥0 − �̂�0)𝑇]     (11) 

(2) Time update 

�̂�𝑘
− = 𝑓(�̂�𝑘−1, 𝑢𝑘−1)                         (12) 

𝑃𝑘
− = 𝐴𝑘−1𝑃𝑘−1𝐴𝑘−1

𝑇 + 𝑄𝑘                    (13) 

(3) Measurement update 

𝐾𝑘 = 𝑃𝑘
−𝐶𝑘

𝑇(𝐶𝑘𝑃𝑘
−𝐶𝑘

𝑇 + 𝑅𝑘)−1                (14) 

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘[𝑧𝑘 − 𝑔(�̂�𝑘
−, 𝑢𝑘)]              (15) 

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃𝑘

−                        (16) 

where 𝐾𝑘  is the Kalman gain, 𝑃𝑘  is estimation error 

covariance matrix, 𝑧𝑘  is the measurement, 𝐴𝑘  and 𝐶𝑘  are the 

Jacobian matrices of the partial derivatives of 𝑓(𝑥𝑘 , 𝑢𝑘) and 

𝑔(𝑥𝑘 , 𝑢𝑘)  respectively, 𝑄𝑘  and 𝑅𝑘 are process noise and 

measurement noise covariance matrices respectively. The 

superscript ‘−’ and ‘+’ represent the prior and posterior 

estimation respectively. 

For different battery models, 𝐴𝑘  and 𝐶𝑘  have different 

expressions due to the different 𝑓(𝑥𝑘 , 𝑢𝑘) and 𝑔(𝑥𝑘 , 𝑢𝑘) . 

According to (2) and (3), the ELM model has the following 

expression. 

𝑉(𝑘) = 𝑓(𝑥𝑘) = ∑  𝐿
𝑖=1

𝛽𝑖

(1+𝑒−(𝑎𝑖[𝑉(𝑘−1),𝐼(𝑘),𝑆𝑂𝐶(𝑘)]𝑇+𝑏𝑖))
   (17) 

Taking the 𝑉(𝑘 − 1) and SoC (𝑘) as state variables in 𝑥𝑘and 

𝑉(𝑘) as the measured output in  𝑦𝑘 , the 𝐴𝑘  and 𝐶𝑘  of ELM 

model are described as follows. 

𝐴𝑘 =
∂𝑓

∂𝑥
|

𝑥=𝑥𝑘

= [
∂𝑓(𝑥𝑘))

∂𝑥𝑘

0 1
]|

𝑥=𝑥𝑘

𝐶𝑘 =
∂𝑔

∂𝑥
|

𝑥=𝑥𝑘
−

= [
∂𝑓(𝑥𝑘)

∂𝑥𝑘

0 1
]|

𝑥=𝑥𝑘
−

           (18) 

Subsequently,  

∂𝑓(𝑥(𝑘))

∂𝑥𝑘
= ∑  30

𝑖=1

−𝛽𝑖𝑎𝑖(𝑒−(𝑎𝑖𝑝(𝑘)+𝑏𝑖))

(1+𝑒−(𝑎𝑖𝑝(𝑘)+𝑏𝑖))
2

∂𝑝(𝑘)

∂𝑥𝑘
         (19) 

where  

∂𝑝(𝑘)

∂𝑥𝑘

= [
1    0
0    0
0    1

] 

As for the Thevenin model, according to (1), (7), and (8), the 

discrete forms are as follows. 

𝑈𝑡.𝑘 = 𝑈𝑜𝑐.𝑘(𝑆𝑂𝐶) − 𝑈𝑃.𝑘 − 𝑅0.𝑘𝐼𝑘              (20) 

𝑈𝑃.𝑘 = 𝑈𝑃.𝑘−1 exp (
−∆𝑡

𝜏𝑘
) + 𝑅𝑃.𝑘−1 (1 − exp (

−∆𝑡

𝜏𝑘
)) 𝐼𝑘−1 (21) 

𝑆𝑂𝐶𝑘 = 𝑆𝑂𝐶𝑘−1 +
∆𝑡∙𝜂∙𝐼𝑘

𝐶𝑚∙3600
                  (22) 

Therefore, taking the 𝑈𝑃.𝑘  and 𝑆𝑂𝐶𝑘  as state variables and 

𝑉(𝑘)  as the measured output, the 𝐴𝑘  and 𝐶𝑘  of Thevenin 

model are described as follows. 

𝐴𝑘 =
∂𝑓

∂𝑥
|

𝑥=𝑥𝑘

= [
1 0

0 exp (
−Δ𝑡

𝜏𝑘
)]

𝐶𝑘 =
∂𝑔

∂𝑥
|

𝑥𝑘=𝑥𝑘
−

= [
∂𝑈OCV

∂SoC
|

𝑥𝑘
−

− 1]

            (23) 
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4. RESULTS AND DISCUSSTION 

4.1 Battery Model Validation 

Since an accurate battery model is the premise of EKF-based 

SoC estimation methods, it is necessary to compared voltage-

tracking capability of the ELM and ECM models first. In 

addition, the mean absolute error (MAE) and root mean square 

error (RMSE) are employed to quantitatively evaluate the 

overall performance. 

𝑀𝐴𝐸 =
1

𝑁
∑  

𝑁

𝑘=1

|𝑦𝑟𝑒𝑓,𝑘 − 𝑦𝑒𝑠𝑡,𝑘|                    (24) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑  

𝑁

𝑘=1

|𝑦𝑟𝑒𝑓,𝑘 − 𝑦𝑒𝑠𝑡,𝑘|
2

            (25) 

where 𝑦𝑟𝑒𝑓,𝑘 is the reference value and 𝑦𝑒𝑠𝑡,𝑘 is the estimated 

value at time step 𝑘. 

Fig. 6 depicts the voltage-tracking capability of the two models 

at 30℃. According to Fig. 6(a) which compares the measured 

and estimated voltages of the two models, it can be observed 

that both two models can track the measured voltage in the 

whole range of SoC. However, as shown in Fig. 6(b) which 

depicts the voltage errors between the measured and estimated 

voltage, it can be concluded that the ELM model has higher 

accuracy than the ECM model, especially in the beginning and 

ending of the test. The voltage errors of the ELM model in the 

whole range of SoC can remain within 20mV while the errors 

of the ECM model exceed 50mV approaching the end of the 

test. According to table 1, the MAEs of the ELM and ECM 

models are 3.68mV and 12.71mV respectively while the 

RMSEs are 4.78mV and 17.32mV respectively. In addition, 

the comparisons of these two models at other temperatures are 

also given in table 1. Overall, it can be concluded that the ELM 

model has better voltage-tracking capability than the ECM 

model.  

 
Fig. 6. Comparison of the estimated and measured voltage of 

the ELM and ECM models at 30℃ 

Table 1. Model validation results at different 

temperatures 

 Unit: mV 10°C 30°C 50°C 

ELM MAE 8.63 3.68 5.87 

 RMSE 12.02 4.78 7.86 

ECM MAE 18.78 12.71 10.44 

 RMSE 22.47 17.32 14.13 

4.2 SoC Estimation Validation 

Fig. 7 depicts the results of two SoC estimation methods, 

namely the ELM-EKF-based and ECM-EKF-based methods, 

at 30 ℃. It is unrealistic to know the accurate initial value of 

SoC in real applications. Thus, the initial value of SoC is set 

as 75% for both methods although the real value of SoC is 

100%. As shown in Fig. 7(a), both two methods can track the 

reference SoC in the whole range of SoC. In addition, the 

estimated SoC can converge to the reference SoC quickly in 

both situations due to the feedback mechanism of EKF 

algorithm. But the ELM-EKF-based method has the faster 

convergence rate according to the zoom figure in Fig. 7(a). 

According to Fig. 7(b) which shows the estimation errors in 

the whole range of SoC, it can be observed that the estimation 

errors of ELM-EKF-based method are stable within 2% while 

the estimation errors of ECM-EKF-based method are much 

larger, exceeding 5% at around 1000s. According to table 2. 

the MAEs of the ELM-EKF-based and ECM-EKF-based 

methods are 0.62% and 1.67% respectively while the RMSEs 

are 0.95% and 2.39% respectively. Furthermore, the 

performance of these two methods under other temperatures 

are compared too. The reason why the ELM-EKF-based 

method has higher accuracy is that the ELM battery model has 

better capability in tracking the terminal voltage, thus 

obtaining small error between the estimated and measured 

voltage. In addition, the mean Kalman gains of the ELM-based 

method is smaller than the ECM-based method, indicating that 

the ELM model outperforms than the ECM model too. Overall, 

the ELM-EKF-based method outperforms than the ECM-

EKF-based method in all temperatures.  

 

Fig. 7. Comparison of the SoC estimation results of the ELM-

EKF-based and ECM-EKF-based methods 
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Table 2. SoC estimation results at different 

temperatures 

 Unit: % 10°C 30°C 50°C 

ELM-EKF MAE 1.30 0.62 1.4 

 RMSE 1.70 0.95 1.68 

ECM-EKF MAE 2.23 1.67 1.96 

 RMSE 2.98 2.39 3.58 

5.  CONCLUSION 

In this paper, an ELM-EKF-based method is proposed for SoC 

estimation where the ELM is utilized to model the battery and 

then is combined with EKF for SoC estimation. To 

demonstrate the superiority of the proposed method, 

traditional Thevenin model based SoC estimation method is 

built. These two battery models as well as the ELM-EKF-

based and ECM-EKF-based SoC estimation methods are 

validated and compared under FUDS driving cycles at three 

different temperatures. The results show that the MAE and 

RMSE of the ELM model are much lower than the ECM model 

at all temperatuers. Combing with the EKF algorithm, the 

ELM-EFK-based algorithms can achive hgher SoC estiamtion 

accuracy than the ECM-EKF-based method at all temperatures 

too.   

The model accuracy can be further improved by considering 

the aging states since the ELM model can be trained  

periodically. And the training process of ELM model is 

relatively easy. The retrained ELM model can be used for SoC 

estimation fo aging LIBs and guantee an accepatable accuracy.  
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