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Abstract: A study on the usefulness of flexible mathematical tools for determining the optimal architecture 

of fuel cell hybrid vehicles is presented. Starting from a pre-existing powertrain and control strategies co-

optimization tool, the technological (especially in terms of lithium battery type) search domain was first 

expanded by including an updated battery model. Afterward, the availability of specification independent 

control strategies was exploited in such a way as to enable two optimization tasks: one relying on previous 

heuristic control rules and the other based on newly optimized control strategies. The results evidenced 

negligible differences, in terms of key control variable trends, objective (i.e., fuel economy), and design 

parameters (i.e., fuel cell system size and battery energy density), thus further proving the tool versatility. 

Moreover, optimal configurations exhibit appreciable fuel economies and acceleration performance on the 

WLTP driving cycle, while proposing potentially cost-effective solutions in terms of fuel cell system size. 

Keywords: PEM Fuel cell, Hybrid vehicles, Energy management, Specification independency, Control, 

Co-optimization

1. INTRODUCTION 

Since the impact of climate change is deeply modifying the 

delicate equilibrium of the ecosystem, reducing the carbon 

footprint of all sectors involved is nowadays necessary and 

urgent. The ambitious yet incontrovertible perspective 

subscribed to during the Paris Agreement is a drastic reduction 

of pollutant emissions within 2030 (Paris Agreement, n.d.). 

The benefits of greener vehicles are undeniable: electric 

vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell 

hybrid vehicles (FCHVs) seem to be the best solution to re-

establish acceptable levels of CO2, representing a valid 

performance alternative to the traditional ones. From this 

perspective, EVs and FCHEVs are attractive because they do 

not operate on a combustion basis. Furthermore, FCHVs may 

feature a more extensive autonomy range than the EVs, thanks 

to the higher energy density of hydrogen storage systems 

compared to the one of battery packs. However, the CO2 

generation linked to the production of electricity and hydrogen 

respectively remains. In particular, since electricity and 

hydrogen production are not frequently green. Thus, the 

emissions are delocalized from the user location to the 

production one (Palmer et al., 2021). Besides, emissions linked 

to the components' production and disposal must also be 

accounted for (Hao et al., 2017).  

In the perspective of a conscious usage of vehicles powered by 

hydrogen, a prudent sizing of the battery pack may lead to the 

development of FCHVs capable of effectively substituting the 

conventional ones. There are some contrasting examples of 

vehicles exhibiting different degrees of hybridization in the 

reference literature. Some of them tend to the unitary value, 

thus converging towards more range extender solutions, while 

others favor a lower power portion supplied by the battery, 

thus being more representative of full hybrid architectures 

(The New Toyota Mirai, n.d.). The tool developed in 

(Sorrentino et al., 2019) determines the proper configuration 

referring to the above solutions while pursuing a quasi-battery 

charge sustaining strategy. Such a goal must be achieved 

without any sacrifice in terms of acceleration performance 

guaranteed. This paper aims to refine the aforementioned pre-

existing co-optimization mathematical tool for proton 

exchange membrane-based FCHVs, considering the 

employment of a new battery model, which better spans the 

current energy vs. power density sizing domain of lithium 

battery technology. The approach presented in this work 

results timely since, in general, the hybrid powertrain 

optimization methods proposed in the literature consider just a 

single type of cell (Jokela et al., 2019), (Sorrentino et al., 

2019), or a small dataset of battery cell types (Zhou et al., 

2022); thus, limiting the optimization design space. 

The present work addresses the previously described 

limitation by exploring the energy density domain of the cell 

technology of interest through the well-known Ragone plot 

relation between energy density and power density of a battery 

cell technology. Consequently, it makes it possible to identify 

what type of cell is most convenient for a particular application 

at a more specific level. The goal is to upgrade the mentioned 

co-optimization procedure to extend the effective search 

domain, in which the optimal solution, in terms of powertrain 

sizing and energy management strategy (EMS) 

parametrization definition, can be achieved. The rule-based 

nature of the parameterized EMS is justified by its suitability 

to derive specification-independent control strategies and to 

facilitate the setting-up of design and energy management co-

optimization tasks (Iqbal et al., 2021), being these features 

incompatible with traditional approaches such as Dynamic 

Programming or Pontryagin Minimum Principle (Onori et al., 

2016). Therefore, another objective of the current study was to 
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derive further control rules that strictly depend on the newly 

introduced parameterized battery-pack model mentioned. The 

final target was to apply the updated co-optimization 

procedure to representative driving cycles, test the adopted 

control strategies specification independence further, and 

prove the suitability of the proposed tool to identify the 

optimal FCHV configuration by exploring a larger technology 

search domain. The article is structured as follows: first, the 

updated battery cell's properties model is introduced, then the 

parametric dimensioning model utilized to define the mass 

impact on the vehicle design is presented. Afterward, the key 

concepts and formulas related to the specification 

independency of the adopted heuristic rules are recalled. 

Finally, the robustness of the design strategy is demonstrated 

via a comparison between the results of the original version of 

the tool and its revisited counterpart, updating the control rules 

as a function of the newly adopted battery model. 

2. DESIGN AND CONTROL METHODOLOGIES 

This section focuses on the design strategy adopted to 

simultaneously address the powertrain components sizing and 

the heuristically derived specification independent control 

strategy. The tool presented in this work, shown in Figure 2, 

enhances the one introduced in (Sorrentino et al., 2019). In 

particular, such a tool is integrated here with an algorithm 

parametrically defining the properties of battery cells to 

explore high-energy and high-power density lithium-ion 

battery design solutions. The remaining of this section presents 

the battery cells sizing algorithm, the FCHV's powertrain 

parametric dimensioning model, the battery pack model to 

simulate its performance during the simulation task, and the 

derivation of the optimized rule-based energy management of 

the hybrid powertrain during the driving phase. 

 

2.1 Battery Cells Dimensioning 

The optimal hybrid powertrain design is linked to the correct 

sizing of the fuel cell system (FCS) and battery pack. In 

particular, the latter's dimensioning is primarily defined by 

selecting high-power density or high-energy density battery 

cells. Such design criteria can be systematized by expressing 

the properties of battery cells as a function of the energy 

density, ˆBattE  [Wh/kg]. This approach is based on the univocal 

relationship between energy storage technologies' energy and 

power densities expressed via the so-called Ragone plot 

(Catenaro et al., 2021), which allows building a functional 

relationship. The regression models shown in Figure  are built 

with experimental data of multiple battery cells over a wide 

range of energy densities retrieved from (Lain et al., 2019). 

With these, it is possible to estimate the power density ˆ
BattP  

[kW/kg], charge capacity 
BcC  [Ah], and discharge voltage (

dischV  [V]) of a battery cell as a function of its energy density. 

Then, the mass of a battery cell 
Bcm  [kg], its nominal power 

BcP


 [kW], and its energy content (
BcCap  [Wh]) can be 

computed as follows: 

  WhBc Bc dischCap C V=    (1) 

 [kg]
ˆ

Bc

Bc

Batt

Cap
m

E
=  (2) 

 ˆ [kW]Bc Batt BcP P m =   (3) 

Once these properties are available for the battery cells, 

dimensioning the battery pack becomes straightforward. The 

designer can make decisions based on battery pack energy 

content (
BattCap  [kWh]) or the nominal power of the required 

battery pack ( BattP
 [kW]). 

2.2 Powertrain Parametric Dimensioning 

This section describes the approach for the powertrain 

systematic design of an FCHV. It starts from the properties of 

previously estimated battery cells and a given nominal power 

Figure 1. Mathematical model to estimate battery cell properties as function of the battery energy density. (a) Lithium-ion 

batteries Ragone plot. (b) Battery cell capacity estimation. (c) Battery cell mean discharge voltage estimation. 

Figure 2. The hybrid powertrain model consists of a hydrogen fuel 

cell (FCS) and a battery pack (B), which feed in parallel an 

electric motor (EM) connected to the wheels of the vehicle. The 

efficiency of the FCS and EM are evaluated by means of the maps 
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of the FCS (
*

FCSP  [kW]). Then, considering a weight/power 

ratio ( 2p w  [kW/kg]), and the mass of the base chassis ( bodyM  

[kg]) of the vehicle class of interest, a set of algebraic 

expressions is formulated as follows: 

 

2
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,

2

* * *

* *ˆ ˆ

ICE CVEM

p w

FCHV CV

Bc Bc FCS EM

FCHV body EM EM FCS FH CS BcT Bc
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


= =



=
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+

+



 (4) 

where 
CVM  and 

*

,ICE CVP  are the conventional vehicle (CV) 

mass and engine power; 
2THM  is the hydrogen's tank mass; 

ˆ
EMm  and ˆ

FCSm  are the mass per unit power in [kg/kW] of the 

EM and FCS respectively. The first expression in (4) imposes 

the 2p w  of a conventional of the FCHV to equal that of a CV. 

Besides, the number of the battery cells (
BcN ) is computed by 

equating the nominal power of the battery pack together with 

that of the FCS to the nominal power of the electric motor (
*

EMP  [kW]). Finally, the total mass of the FCHV (
FCHVM  [kg]) 

is computed by adding the contribution of all the hybridizing 

components. 

2.3 Battery Model 

To evaluate the state of charge (SOC) of the battery pack 

during its operation, in the present work an R-int type battery 

model (Mousavi G. & Nikdel, 2014) is used as shown in Figure 

. The open circuit voltage (OCV  [V]) and the internal 

resistance of the battery pack (
intR  [Ω]) during charge and 

discharge load are estimated as a function of the battery state 

of charge ( SOC ) by considering the experimental data from 

(Saxena et al., 2015) measured from a battery pack found in 

the literature (Saxena et al., 2015) and shown in Figure 2. 

Besides, the instantaneous SOC  is evaluated via Coulomb 

counting approach by the following expression 

 
0

3600

1
( )Batt

Bc Bc

SOC t
C

dt Ci
N

SO


− +


=   (5) 

where 
0SOC  is the initial condition of the variable, and 

Batti  

[A] is the battery current computed as a function of the 

instantaneous power delivered (
BattP ) as follows 

 
2

int 

int

( ) ( ( )) 4 ( )

2

Batt

Batt

OCV SOC OCV SOC R SOC P
i

R

− −
=  (6) 

therefore, allowing to compute the SOC  along the simulation. 

2.4 Optimized Rule-based Energy Management Strategy 

The EMS handles the control of the two power sources, 

namely the battery pack and the FCS, onboard the vehicle 

during the driving cycle. In this work, a rule-based EMS with 

optimized parameters developed in previous contributions 

(Sorrentino et al., 2011) is considered for testing its 

adaptability to the new battery pack sizing approach 

introduced in Section 2.1. The present algorithm parameterizes 

the power delivered by the FCS and allowed discharge level of 

the battery pack as function of the average power demanded 

by the drivetrain ( trP ). The latter is calculated from a 

standardized driving cycle and the vehicle's longitudinal 

equation of motion. In this way, the instantaneous power of the 

FCS, 
FCSP , and the discharge level, SOC , of the battery 

pack with respect to a target level, fSOC , can be expressed as: 

 ( )FCS trP f P=  (7) 

 ( )trSOC g P =  (8) 

where the functions f  and g , to be referred to as control-

maps, are constructed by considering the optimization 

framework presented in Figure . The scenario shown features 

a fixed time-horizon (
ht ) in which a constant trP  is supplied 

by the power sources during two different phases. First, a 

charge depleting phase in which only the battery pack supplies 

power, thus SOC  varies from fSOC  to fSOC SOC−  . 

Then, during the second phase, the FCS operates exclusively 

with constant power 
FCSP . The two parameters defining the 

control policy, namely 
FCSP  and SOC  are determined, for 

multiple values of trP , by a nonlinear numerical optimization 

problem minimizing the following cost function 

 

( )
2H

0

*

,
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s

,

.t.

0

h

FCS

t

FCS

C

P SOC

FCS F S

m P SOC dt SOC

P P



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 (9) 

where the time integral of hydrogen mass flow during the time 

horizon is minimized as well as the term SOC , which, as 

shown in Figure , is defined as 

 f endSOC SOC SOC = −  (10) 

Figure 3. The equivalent circuit battery model to 

monitor the state of charge during operation. 

Figure 4. Optimization framework to construct the functions f and 

g for the optimal rule-based strategy. 
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with 
endSOC  being the value at the end of the time horizon 

considered. The optimization framework previously described 

takes place by considering a reference powertrain featuring 

dimensioned components. Therefore, the computed control 

maps in (7) and (8) are characterized by the reference values 
*

,FCS refP  and ,Batt refCap  used to compute them. Thus, to promote 

the feasibility of the control algorithm at various powertrain 

sizing, the following expressions are formulated to normalize 

the optimization results: 

 
,norm *

,

,SOC

FCS

FCS

FCS ref

norm Batt ref

P
P

P

SOC Cap

=

 =  

 (11) 

Then, the control policy can be deployed for a different 

powertrain by denormalizing the control maps as follows 

 

*

,denorm *

,

*

,denorm ,

Batt ,

denorm

Batt

tr

tr FCS

FCS ref

FCS FCS norm FCS

ref

P
P P

P

P P P

SOCCap
SOC

Cap

=

=


 =

 (12) 

in this way generalizing the control maps for a wide range of 

hybrid powertrain designs. The above-recalled energy 

management strategy was proven effective via comparison 

with both genetic algorithm (Sorrentino et al., 2010) and 

dynamic-programming (Sorrentino et al., 2011) offline 

optimization tasks. 

3. RESULTS 

The normalized control maps of the energy management 

strategy, obtained through the previously described 

optimization framework, are presented in Figure . Two 

nominal power values for the reference powertrain's fuel cell 

system, 
*

,FCS refP , have been considered during the construction 

of the control maps, namely 20 and 30 [kW]. Besides, two 

different battery packs for each of these reference powers are 

employed, yielding two variants of the control maps, namely 

the Original Maps and the Modified Maps. The Original Maps 

are built using a battery pack with high-power density cells, 

sized following the procedure described in (Sorrentino et al., 

2019). On the other hand, the Modified Maps consider a 

battery pack sized using the approach described in Section 2.1, 

which contemplates high-energy and high-power density 

batteries. The contrast between the Original Maps and 

Modified Maps curves in Figure  demonstrates their robustness 

to the powertrain design considered during the offline 

optimization. 

 
Table 1. The powertrain co-optimization strategy results, 

considering both the modified and original maps for 20 and 30 kW 

of FCS reference power. The table presents the optimal powertrain 

design parameters for each of the latter. 

 

 Furthermore, through the powertrain parametric 

dimensioning approach, introduced in Section 2.2, which 

allows sizing an FCHV powertrain having as inputs 
*

FCSP  and 

ˆ
BattE , a co-optimization procedure of the powertrain design 

was considered, homologous to the one presented in 

(Sorrentino et al., 2019). This approach takes the fuel economy 

(FE), defined as the ratio between the total traveled distance 

and the fuel consumed, as the objective function to maximize 

during a given driving cycle. Besides, the powertrain 

parametric dimensioning approach inputs are set as the design 

variables inside the numerical optimization routine as follows 

 
*

2

ˆ,

PD charge

m

]

km

kg

s.t.  1

n

[

i

00

FCS BattP E
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L

m

t s−

 
 
 

→ 

 (13) 

 𝑃𝐹𝐶𝑆,𝑟𝑒𝑓  [kW] 20 30 

 

Modified 

Maps 

FE [km/kg] 114.2942 114.5162 

𝑃𝐹𝐶𝑆
∗  [kW] 22.2635 21.2079 

𝐸̂𝐵𝑎𝑡𝑡 [Wh/kg] 76.9854 73.3321 

Battery capacity 

[kWh] 
1.3666 1.3073 

𝑃𝐵𝑎𝑡𝑡
∗  [kW] 54.85 55.67 

 

Original 

Maps 

FE [km/kg] 114.3141 114.4321 

𝑃𝐹𝐶𝑆
∗  [kW] 22.1298 21.2471 

𝐸̂𝐵𝑎𝑡𝑡 [Wh/kg] 77.8213 71.7457 

Battery capacity 

[kWh] 
1.3879 1.2705 

𝑃𝐵𝑎𝑡𝑡
∗  [kW] 54.96 55.64 

Figure 5. Normalized control maps of the control strategy for an extended range of mean traction power. 
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where L  represents the total distance covered during the 

driving simulation; 
2H

m is the total hydrogen mass consumed 

during the driving and posdriving recharge phase to restore its 

initial condition when required; and PD charget −  is the duration of 

such posdriving recharge. In the present work, a concatenation 

of five WLTP cycles is selected to approximate the full-day 

travel of a standard vehicle in a typical city (Tutuianu et al., 

2015). Such a driving schedule is also suitable to test effective 

power-split deployability by performing model-based analyses 

featuring low-level controllers of PEM-based FCHV 

powertrains (Arsie et al., 2007). The results of this process are 

presented in Table 1. In general, the FCS nominal power, the 

battery energy density, battery pack capacity, and the optimal 

fuel efficiency for each of the cases considered vary slightly 

between the Modified Maps and Original Maps variants. For 

instance, the difference in the optimal fuel economy obtained 

for both variants, considering the 20 and 30 kW maps, varies 

by 0.017% and 0.073%, respectively. This fact confirms the 

robustness of the control algorithm to the powertrain design 

parameters. In addition, it is worth highlighting that the 

maximum fuel economy value reported in Table 1 is 

comparable to the value reported in (The New Toyota Mirai, 

n.d.). This shows that the proposed mathematical tool allows 

identifying the optimal powertrain design, presenting a low 

FCS nominal power and, therefore, cost containment in future 

FCHV deployment scenarios, which meet major automakers' 

performance and consumption requirements. 

Finally, the dynamics of the SOC and the power delivered by 

the FCS during the driving cycle simulation are considered to 

further evaluate the difference on the energy management 

strategy for the Original Maps and the Modified Maps 

variants. The powertrain design considered is that yielding the 

higher fuel economy from Table 1, that is: 

 
 * 21.2079 kW

ˆ 73.3321[Wh/kg]

FCS

Batt

P

E

=

=
 (14) 

Figure  present the behavior of the SOC dynamics and the 

control policy of the FCS power for both variants during the 

simulation of the driving cycle. In general, from Figure , the 

behavior of the SOC follows the same trend for both control 

maps variants. The difference between both curves lies mainly 

in the depth of discharge, being slightly more prominent for 

the Modified Maps variant. A similar observation emerges 

from Figure 6., where both control policies follow the same 

pattern, except for minor differences in the time of occurrence 

of some steps and their magnitude. In order to obtain a 

quantitative measure of the similarity of these variables, it is 

calculated the root mean squared error (RMSE) of the signals 

as follows 

 ( ) ( )( )
21

MM OM

m

RMSE SOC t SOC t
m

= −  (15) 

where m  is the number of data samples of both signals, 

MMSOC  is the SOC  time signal of the Modified Maps variant, 

and 
OMSOC  the SOC  time signal of the Original Maps 

variant. This index is equal to 0.0384 for the SOC  time signal, 

and, analogously, for the ( )FCSP t  yields 2.6396. Both numeric 

indicators of high similarity between the simulation results 

featuring the two control maps variants.  

4. CONCLUSIONS 

 

This work presents a mathematical tool for the parametric 

dimensioning of an FCHV, its specification independent 

energy management strategy formulation, and the co-

optimization of both design and energy management strategy 

by considering the fuel economy as the objective function. In 

particular, the present work is a continuation of the results 

presented in a previous authors contribution. The contribution 

herein consists of proposing an improved algorithm for the 

sizing of the FCHV battery pack that considers battery cells 

with high-energy density and high-power density through the 

univocal relationship between these properties through the so-

called Ragone plot. Additionally, the verification of the 

robustness of the control algorithm proposed for the energy 

management strategy is demonstrated by varying the 

parametric dimensioning model of the FCHV and the driving 

cycle employed during the co-optimization. In particular, the 

present work considers a concatenation of five WLTP cycles, 

resulting in a highly demanding driving test.  

The robustness of the present tool has been analyzed 

qualitative and quantitatively via the analysis of the resulting 

normalized control maps, the co-optimization results analysis, 

and the driving cycle simulation of both the Original Maps and 

SOC ( )FCSP t trPFigure 6: Comparison of the  and  during the complete driving cycle simulation power demand , using the original and 

modified maps variants 
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the Modified Maps variants. The negligible percentage 

differences in the optimal fuel economy and the RMSE 

between the SOC dynamics and the FCS power supply of both 

variants confirm the tool's robustness.  

Therefore, with the new battery model, the extension to more 

critical/demanding cycles such as WLTP and the confirmation 

of the versatility and specification independence of the control 

maps are proven. Consequently, the present mathematical tool 

lends itself to an extended analysis to perform optimal design 

choices, while taking into account multiple variables and 

exogenous factors. In this way, by defining appropriate 

objective functions and constraints, it will be possible to create 

a tool that identifies the best design solution depending on the 

boundary conditions. These will include the cost of 

components, availability of hydrogen, refueling station, 

recharging stations, plugin, or charge sustaining configuration, 

to name a few. 

 

REFERENCES 

Arsie, I., Di Domenico, A., Pianese, C., Sorrentino, M. (2007). 

Modeling and analysis of transient behavior of polymer 

electrolyte membrane fuel cell hybrid vehicles. Journal 

of Fuel Cell Science and Technology, 4:261–71. 

Catenaro, E., Rizzo, D. M., & Onori, S. (2021). Experimental 

analysis and analytical modeling of Enhanced-

Ragone plot. Applied Energy, 291, 116473.  

Hao, H., Mu, Z., Jiang, S., Liu, Z., & Zhao, F. (2017). GHG 

Emissions from the Production of Lithium-Ion 

Batteries for Electric Vehicles in China. 

Sustainability, 9(4), 504.  

Jokela, T., Iraklis, A., Kim, B., & Gao, B. (2019). Combined 

Sizing and EMS Optimization of Fuel-Cell Hybrid 

Powertrains for Commercial Vehicles. 2019-01–

0387.  

Lain, Brandon, & Kendrick. (2019). Design Strategies for 

High Power vs. High Energy Lithium Ion Cells. 

Batteries, 5(4), 64.  

Mousavi G., S. M., & Nikdel, M. (2014). Various battery 

models for various simulation studies and 

applications. Renewable and Sustainable Energy 

Reviews, 32, 477–485.  

Onori, S., Serrao, L., & Rizzoni, G. (2016). Hybrid Electric 

Vehicles. Springer London.  

Palmer, G., Roberts, A., Hoadley, A., Dargaville, R., & 

Honnery, D. (2021). Life-cycle greenhouse gas 

emissions and net energy assessment of large-scale 

hydrogen production via electrolysis and solar PV. 

Energy & Environmental Science, 14(10), 5113–

5131. 

Paris Agreement. (n.d.). Retrieved March 7, 2022, from 

https://ec.europa.eu/clima/eu-action/international-

action-climate-change/climate-negotiations/paris-

agreement_en 

Saxena, S., Le Floch, C., MacDonald, J., & Moura, S. (2015). 

Quantifying EV battery end-of-life through analysis 

of travel needs with vehicle powertrain models. 

Journal of Power Sources, 282, 265–276.  

Sorrentino, M., Cirillo, V., & Nappi, L. (2019). Development 

of flexible procedures for co-optimizing design and 

control of fuel cell hybrid vehicles. Energy 

Conversion and Management, 185, 537–551.  

Sorrentino, M., Pianese, C., & Maiorino, M. (2013). An 

integrated mathematical tool aimed at developing 

highly performing and cost-effective fuel cell hybrid 

vehicles. Journal of Power Sources, 221, 308–317.  

Sorrentino, M., Rizzo, G., & Arsie, I. (2011). Analysis of a 

rule-based control strategy for on-board energy 

management of series hybrid vehicles. Control 

Engineering Practice, 19(12), 1433–1441.  

The New Toyota Mirai. (n.d.). Toyota Europe Newsroom. 

Retrieved March 1, 2022, from 

https://newsroom.toyota.eu/the-new-toyota-

mirai/#:~:text=Improvements%20in%20performanc

e%20and%20efficiency&text=Despite%20the%20hi

gher%20output%2C%20fuel,by%20the%20previous

%20generation%20model. 

Tutuianu, M., Bonnel, P., Ciuffo, B., Haniu, T., Ichikawa, N., 

Marotta, A., Pavlovic, J., & Steven, H. (2015). 

Development of the World-wide harmonized Light 

duty Test Cycle (WLTC) and a possible pathway for 

its introduction in the European legislation. 

Transportation Research Part D: Transport and 

Environment, 40, 61–75.  

Zhou, J., Feng, C., Su, Q., Jiang, S., Fan, Z., Ruan, J., Sun, 

S., & Hu, L. (2022). The Multi-Objective 

Optimization of Powertrain Design and Energy 

Management Strategy for Fuel Cell–Battery Electric 

Vehicle. Sustainability, 14(10), 6320.  

 

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

328


