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Abstract: Connected vehicle paradigm allows the systematic recording of data, which may
be made available for both on-board and cloud diagnostics functions. However, real-driving
conditions may be highly dynamic, making the application of diagnostic methods cumbersome.
This article analyzes the variability of real-world data coming from a mild hybrid vehicle at
various levels (i.e., vehicle, powertrain and engine cycle). The results show that although non-
steady, real-driving conditions can exhibit situations that could be leveraged to characterize the
nominal operation of the vehicle over time and therefore ease the detection of faulty operation.
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1. INTRODUCTION

The increasing number of actuators, sensors and con-
trol strategies embedded in modern vehicles have allowed
manufacturers and OEMs to comply with the evolving
emissions legislation (Payri et al., 2015). At the same
time, this also had the effect to increase the complexity
of the vehicles architecture and therefore the risk of faulty
operation (Zhang et al., 2009). Yet, the larger number of
sensors in the vehicles offers a better diagnostic capability
(Kiencke and Nielsen, 2005). Current on-board diagnostics
(OBD) monitor a plethora of variables and aim to detect
early on faults to notify the driver that a maintenance
operation is required (Saibannavar et al., 2021).

Current solutions in the automotive industry tradition-
ally lack of ability to monitor, analyze and compare data
over the vehicle’s lifespan. Recent advancements in tech-
nologies and vehicles connectivity provide however for a
whole new perspective for vehicles diagnostics (Guardiola
et al., 2021b). Either embedded in the vehicle or computed
remotely, the knowledge resulting from the systematic
recording of real-world operation data will enable improve-
ments in faults detection and diagnostic models. Pattern
recognition and prediction (Joud et al., 2020; Luján et al.,
2021), machine learning algorithms (Garg et al., 2021),
big data and internet of things (IoT) (Maksimychev et al.,
2021; Meenakshi et al., 2021), are all examples of appli-
cations that have gained interest in the recent years to
leverage the quantity of data made available.

Many diagnostic strategies are based on outliers detection
and residuals analysis. For example, Kimmich et al. (2005)
were able to detect faults in the intake and the injec-
tion systems thanks to residuals measurement. After char-
acterizing nominal operation with models, Jung (2019)
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developed a classifier based on the measured residuals
to identify and separate different faults. These examples
show that the correct execution of data-driven diagnostic
methods is, somewhat, reliant on the characterization of
the nominal fault-free operation of the system. In par-
ticular, characterizing the expected variation of a given
quantity under specific conditions is required. From a
transportation perspective, this characterization can be
established at various levels: from fleet, to vehicle, and
down to component level (Guardiola et al., 2021b).

In internal combustion engine vehicles, modern engine con-
trol units (ECU) integrate sufficient computational power
to deal with high speed analog signals acquisition and real-
time execution, which provides effective diagnostic and
control capabilities at various components and subsystems
levels (Reif, 2014). Combustion diagnostic itself tradition-
ally relies on knock sensors and instantaneous engine speed
calculation from crankshaft position measurement (Lee
et al., 2001; Guillemin et al., 2008). Although cost-effective
and non-intrusive, these approaches do not provide a di-
rect measurement of the cylinder conditions. However,
the need for robust performance and diagnostic in real-
driving conditions, in order to comply with the legislation
over the vehicle’s lifespan, could require a more accurate
solution. Usually limited to research activities, the in-
cylinder pressure sensor has found some applications in
production engines (Hadler et al., 2008; Kazuhiro et al.,
2017). This sensor offers the opportunity to obtain a direct
measurement of the combustion process and exhibits the
potential to be implemented in a large number of obser-
vation and control applications (Willems, 2018; Guardiola
et al., 2021a).

This article aims to analyze data registered from a vehicle
in real-driving conditions. Compared to a controlled envi-
ronment such as in engine test bench experiments, real-
world operation is subject to many external disturbances.
The nominal operation might consequently be affected and
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Fig. 1. Systems communication and data acquisition lay-
out.

the expected variation of the data must be analyzed. By
doing so, one could compare if the levels measured during
the research and development process can be expected in
the final implementation. Such analysis can be done at
different levels (e.g., fleet, vehicle, powertrain operation)
and in this work the crank-based combustion evolution
itself was also considered. To the best of the authors
knowledge, such measurement and analysis has not been
extensively performed in real-world conditions. The paper
is organized as follows: first, the experimental setup is pre-
sented. Section 3 describes some considerations regarding
the acquisition and processing of the data and section
4 presents the results of the analysis. Finally, section 5
summarizes the findings of this article.

2. EXPERIMENTAL SETUP

The database studied in this work consisted in every-
day life trajectories from a mild hybrid diesel C-segment
vehicle. Data were gathered from various sources and a
special attention had to be dedicated to the processing of
these data. Figure 1 shows a scheme of the global systems
communication layout. Different layers with different ob-
jectives can be found.

At the vehicle level, information provided by the ECU
(e.g., injection settings) and the vehicle CAN network were
transmitted to a laptop (PC) in charge of gathering the
incoming data. The communication from the ECU to the
PC was made possible by the A8 serial interface where ATI
Vision software was used to access the calibration and data
acquisition. The vehicle CAN bus was connected to the
PC via a CAN to USB interface. Over 250 measurement
channels were recorded in this setup, including ECU
sensors and actuators, and vehicle sensors such as GPS.
Data from the ECU and the CAN bus were stored on a
single MF4 file.

The engine was equipped with an OPTRAND AutoPSI-
TC in-cylinder pressure sensor integrated in one of the
engine glow-plugs. Engine test bench applications tradi-

tionally rely on research encoders with a tuned resolution
to provide the acquisition frequency. In this case, the 60-2
crank trigger wheel signal was used instead. The acquisi-
tion of this signal was carried out by a real-time cRIO-
9049 from NI where a NI-9401 digital module was used to
measure the edges provided by such signal. The 60-2 crank
signal represents, however, a low sampling frequency clock
for a proper in-cylinder pressure acquisition. A software
clock divider was therefore used in order to generate a
virtual encoder with a final resolution of 0.375 crank an-
gle degree (CAD). This calculation was performed in the
field-programmable gate array (FPGA) embedded in the
cRIO-9049 and the resulting crank-angle clock signal was
used to define the acquisition of the in-cylinder pressure,
whose signal was measured by a 16 bits resolution NI-9223
analog acquisition module. Finally, in order to calculate
the cycle-to-cycle combustion metrics, the acquisition of
the in-cylinder pressure requires to be referenced with the
crankshaft position. Here, the 60-2 trigger signal together
with the camshaft position signal were used to get the
piston position (Reif, 2014). In-cylinder pressure data ac-
quisition and processing were programmed on the real-
time system, which streamed all data to a disk in TDMS
format, and published cycle metrics plus a clock time
stamp on the CAN network via a NI-9853 CAN module.

3. METHODOLOGY

3.1 Acquisition, update and phasing of the data

As described in the previous section, the present exper-
imental setup makes use of various data sources. Such
configuration is therefore characterized by different update
and acquisition rates depending on the considered system.
In this case, ATI Vision was used for registering the rel-
evant ECU channels every 10 ms. Vehicle CAN network
messages were recorded when available, thus resulting in a
variable acquisition frequency. This was significantly rele-
vant for in-cylinder pressure metrics, which were updated
once per cycle. This means that, along the experiment, the
data might be updated and acquired at different moments,
as illustrated in Figure 2. In this figure, the black dot
markers correspond to the acquisition time steps of the
ECU variables, the orange dots are the update of the com-
bustion calculations and acquisition made by the cRIO-
9049, and the blue diamonds represent the update rate of
the vehicle CAN variables whose value varies depending
on the selected variables.

From the ATI Vision side, every variable acquired is paired
with a time stamp in order to phase them over time in the
data processing. That is, when starting to save the data, a
time vector is incremented and once a variable is acquired,
either from the ECU or the CAN bus, the corresponding
time stamp is saved as well. As previously mentioned, the
data saved by the cRIO do not share the same time vector
increment than the MF4 file. Consequently, the cRIO time
stamp at which the engine cycle is computed and saved is
also sent by CAN to the PC and serves as the reference to
phase the signals afterwards.

This experimental setup aims to compare data coming
from the vehicle on an engine cycle-to-cycle basis. There-
fore, it was decided to discretize and phase the signals
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accordingly. Although various ways to achieve it might
be possible, here, the following methodology was selected
(indications in grey in Figure 2 illustrate these steps):

(1) Firstly, the values coming from the CAN bus (e.g.,
vehicle GPS coordinates) were interpolated according
to the ECU acquisition time steps in order to process
the data from these two sources in the same time
basis. That is, CAN levels are linearly interpolated
at every ECU time step using the nearest CAN
information.

(2) Secondly, at every engine cycle, the corresponding
cRIO-9049 time stamp, saved through CAN, is sought
in the MF4 file. Once encountered, the previous near-
est time stamp of the ECU is selected and the corre-
sponding ECU and interpolated vehicle CAN values
are associated to the engine cycle. In the case where
both the engine cycle and ECU acquisition occur
at the same time, then they are directly associated.
Note that this approach might imply a cycle delay
sometimes because it is never certain whenever the
engine cycle will be saved and when the actual change
in the ECU settings occur. Yet, it was found that this
strategy was providing sufficiently phased signals to
conclude on a cycle-to-cycle analysis.

3.2 In-cylinder pressure processing

The in-cylinder pressure signal requires some processing
in order to analyze the combustion evolution (Payri et al.,
2010). First, the signal was leveled (pegging) with the
intake manifold pressure near the intake bottom dead
center (BDC) (Brunt and Pond, 1997). Then, the signal
was filtered at 1500 Hz to remove the resonant frequencies
content (Guardiola et al., 2018).

In this article, the gross indicated mean effective pressure
(IMEP) was used as an indicator of the engine load and
its value was obtained with the following equation:

IMEP =
1

Vd

∫ BDC2

BDC1

p dV (1)

where Vd is the engine cylinder displacement volume, p
the in-cylinder pressure, V the instantaneous combus-
tion chamber volume obtained from geometric crankshaft-
piston position, and the limits of the integration are
the compression and the expansion bottom dead centers,
BDC1 and BDC2 respectively.
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Fig. 3. Geographical location of the selected vehicle tra-
jectory.

One important tool when analyzing the evolution of the
combustion is the heat release calculation. Here, as no
significant accuracy was required, the apparent heat re-
lease computation with a constant polytropic coefficient
was used (Asad and Zheng, 2008):

dQ =
κ

κ− 1
pdV +

1

κ− 1
V dp (2)

with κ the polytropic coefficient set to 1.3

4. RESULTS AND DISCUSSION

In the considered setup, characterizing the nominal opera-
tion can be done at various levels: vehicle and powertrain
operation, and combustion evolution. In the first one, the
registered data could allow to characterize and model
quantities under nominal operating conditions in order
to detect any deviation over time (e.g., NOx emissions
to detect sensor drift or abnormal combustion). Also,
having access to historic data, one could characterize the
speed profile at a specific location in order to get knowl-
edge about the driving style, eventual traffic conditions,
expected fuel consumption, etc. In the second category,
thanks to the access to the in-cylinder pressure evolution,
one could analyze if the combustion is similar between
cycles with the same injection settings, get a direct mea-
surement of the load through IMEP calculation, build in-
cylinder pressure process models, etc. The case studies are
various and in this work some examples were selected to
analyze how the nominal operation of various quantities
could be characterized from real-world data provided with
such experimental setup.

From a vehicle point of view, it was first decided to analyze
the database available in this study. Most of the data
recorded come from the high speed-low acceleration range,
corresponding to highway conditions. Accordingly, a recur-
rent trajectory from the database with a highway section
was found and selected. This trajectory, illustrated in blue
from point A to point B in Figure 3, was performed in the
area of the city of Valencia (Spain) and includes mostly
extra-urban and highway conditions. Such situation might
also be found at a fleet level considering that most of the
vehicles experience a recurrent trajectory (e.g., commuting
from home to workplace and vice versa).
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Fig. 4. Evolution of the vehicle speed at various days of
experiments along the same recurrent trajectory.

Considering that the selected trajectory passes through
the same GPS coordinates, it could be of interest to
compare the speed levels over time at the same location to
characterize the nominal operation of the vehicle. Figure 4
shows the monitored vehicle speed at the various days
of experiments (note that for a better readability and
interpretation of the results, here the x-axis corresponds
to a specific latitude-longitude location transcribed into a
single sample index). It can be observed that real-driving
conditions, especially for urban and extra-urban areas,
are highly impacted by the traffic conditions. Nonetheless,
as observed in the last part of the highway segment, it
is still possible to detect some areas with very similar
conditions which might be of a better candidate for a
nominal operation characterization.

Figure 5 shows the vehicle speed profile from each test at
the end part of the highway segment from Figure 4 where
the traffic conditions allowed to obtain similar results.
Note that in these tests, the driver was enabling the vehicle
cruise control on highway conditions which is believed to
have greatly participated into obtaining similar profiles.
Indeed, compared to pedal control from the driver, the
cruise control strategy is expected to be more prone to
provide similar speed profiles at the same GPS location. It
can be seen that the cruise control strategy exhibited quite
a repetitive behavior which resulted in very similar vehicle
speeds for a same GPS location (in this segment the mean
vehicle speed standard deviation between experiments was
about 0.07 km/h). Once these conditions are established,
it is then possible to compare other metrics from the
vehicle. As an example, once could build a nominal op-
erating conditions model with a confidence interval for
vehicle speed and other metrics such as the injected fuel
quantity. In this particular case, the solid black lines in
this figure represent such hypothetical envelope that could
be characterized under normal engine operation mode. In
the bottom plot, around the end of the selected segment,
it is observed that in one of the experiments an abrupt
increase in the injected fuel quantity occurs and exits the
nominal interval. Although the fuel quantity value might
be expected to vary with vehicle’s attributes such as the
total vehicle payload, or external disturbances such as
wind conditions, in this case this was justified by a change
in the combustion mode due to a regeneration of the diesel
particulate filter (DPF). In the case where no variation in
the combustion mode would have occurred, such deviation
from the confidence interval might have been detected

Fig. 5. Zoom on a segment (highway) from the trajectory
where the vehicle speed (top) was detected to be in
the same range for all the experiments. The respective
fuel quantity injected is shown in the bottom plot.
The solid black lines represent a hypothetical model
confidence interval.

thanks to the recording of the vehicle’s data over time
and therefore trigger a fault detection.

The previous example was limited to quasi-steady con-
ditions in terms of vehicle speed, which helped to char-
acterize the nominal operation of the vehicle from this
point of view. However, as previously observed in Figure 4,
real-driving conditions are made of significant transients.
Nonetheless, the characterization of the nominal operation
of the system might be performed at another scale where
no steady operation is required. Following the previous
observation made on the injected fuel quantity, thanks to
the measurement of the in-cylinder pressure it is possible
to calculate the IMEP (i.e., the engine load) in a cycle-
to-cycle basis. This value is expected to be well correlated
with the quantity of fuel injected in the cylinder. Figure 6
shows the measured IMEP against the total injection
quantity set by the injection strategy in the ECU for
the whole database filtering out the non-normal engine
modes (e.g., DPF regeneration). This figure shows the
distribution of around 1.5 million cycles where the bright-
est region shows the highest density. The darkest regions
correspond to low density cycles and are explained by the
eventual cycle delay resulting from the phasing of the data
as explained in section 3, especially for the low load-low
fuel quantity region due to recurrent pedal tip-in/tip-out.
Nonetheless, a fairly clear relationship and model between
fuel quantity and IMEP under nominal operation could be
inferred from the database. Such characterization could
then help to detect any injector fault or abnormal com-
bustion conditions by detecting various cycles outside of a
confidence interval, e.g., injectors performance worsening
due to coking (D’Ambrosio and Ferrari, 2012).

The present experimental setup offers the potential to
diagnose the engine operation at a deeper and higher
resolution level than vehicle and powertrain operation
thanks to the crank-based measurement of the in-cylinder
pressure signal. Either from a diagnostic or modeling and
prediction perspective, the repeatability of the combustion
under similar operating conditions is essential. Engine
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Fig. 6. Density plot of the relation between the quantity
of fuel set by the ECU and the corresponding IMEP
measured from in-cylinder pressure.

test bench research activities are able to characterize the
nominal engine cyclic variability thanks to steady-state
conditions and long settling times. However, as previously
observed, real-driving conditions do not exhibit long peri-
ods of steady conditions and instead are prone to dynamic
operation that might affect the cyclic variability. Yet,
it is believed that at different moments of the vehicle’s
usage, various cycles should be monitored at similar op-
erating conditions. Within the available database, cycles
with the same injection settings and engine speed from
all the experiments were sought and two datasets were
selected, see Figure 7. In particular, two types of con-
ditions were chosen: steady and transient. As illustrated
in the top plot of Figure 7, one dataset was created
from cycles occurring in a relatively steady operation with
low acceleration profiles (e.g., highway), while the other
one corresponds to a more dynamic situation. Note that
all the cycles are not represented in the top plot (only
for illustration purposes). This figure shows: the cycle-
to-cycle in-cylinder pressure (pcyl) and heat release rate
(dQ) traces from the two selected operating conditions in
grey, as well as an average cycle in black. In the middle
plot, the average injector’s signal is also shown in blue
for illustration purposes (maximum start of injections and
injection quantities standard deviation from all the cycles
are 0.015 CAD and 0.06 mg/str, respectively). The results
from this cycle analysis can be found in Table 1. It can
be appreciated that some cycles with similar injection
settings and operating conditions might be detected and
allow therefore to characterize the cyclic variability from
real-driving conditions. Here, the maximum in-cylinder
pressure value and position, as well as the maximum heat
release rate value and position, were arbitrarily chosen as
indicators to evaluate the cyclic variability of these signals,
as listed in Table 1. Note that the values provided for the
crank angle positions of these metrics are given according
to the resolution of the virtual encoder (i.e., 0.375◦) and
that their values are expressed in degrees after the top
dead center (aTDC). From these results, it is observed
that some repeatability can be found even from an engine
cycle level although measured from different experiments.
These variability levels could be compared to engine test
bench results, used to build models of the engine in real-
driving conditions, or kept as a reference and therefore
ease the detection of faulty operation by comparing these
traces with future ones.

Data 1

Data 2

Fig. 7. Selection of two cycles datasets in different driving
conditions (top). The in-cylinder pressure (middle)
and heat release rate (bottom) traces from all the
cycles are shown in grey and an average cycle is
shown in black. An average injector signal (middle)
is illustrated in blue.

Table 1. Operating conditions and results of
the cyclic variability analysis from Figure 7

(x: mean value, σx: standard deviation).

Data 1 Data 2
(248 cycles) (137 cycles)

Variable (x) x σx x σx

n [rpm] 2079 2.7 1590 5.9
mf [mg/str] 15.15 0.05 19.65 0.07
prail [bar] 729 5.5 471 9.4
pint [bar] 1.33 0.02 1.24 0.06
Tint [◦C] 45 3 41.6 3
Tcool [◦C] 90.7 7.5 88.7 6.2
rEGR [%] 25.5 1.2 26.7 4

pmax
cyl [bar] 65.08 1.09 59.73 1.80

θ
(
pmax
cyl

)
* [◦aTDC] 12 0.190 12 0.174

dQmax [J/CAD] 45.58 2.11 50.46 2.87
θ (dQmax)* [◦aTDC] 9.00 0.181 8.625 0.251

n: engine speed, mf : fuel quantity, prail: rail pressure,
pint: intake manifold pressure, Tint: intake manifold tem-
perature, Tcool: engine coolant temperature, rEGR: ex-
haust gas recirculation rate, θ: crank angle position
*Note that the σx value might be below the virtual
encoder resolution (0.375◦) and this value should therefore
be considered with care.
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5. SUMMARY AND CONCLUSIONS

The increase in vehicles connectivity has the potential to
extend the diagnostics capabilities beyond the boundaries
encountered up to now. Still, it remains important to
leverage the amount of data generated by the vehicles
and to evaluate their capacity to transmit the informa-
tion intended to the desired application. Many diagnostic
methods rely on some sort of outliers detection. To do
so, nominal operation must be characterized at first. This
paper proposed to analyze some use cases for character-
izing such nominal operation at various levels: vehicle,
powertrain and combustion. The database used in this
work was based on real-world driving conditions from an
instrumented vehicle. Starting from highway cruise control
conditions, various experiments from a recurrent trajec-
tory were found to exhibit very similar speed profiles at
the same GPS location. By harnessing this situation at a
deeper level, it was found that a nominal operation speed
and fuel quantity interval could be inferred and participate
in detecting faulty injections. Finally, the analysis was
oriented towards high resolution signals such as in-cylinder
pressure and heat release rate by evaluating the cyclic vari-
ability over various experiments with the same injection
settings in real-driving conditions. The results illustrated
that characterizing the system could be made at various
levels, which should participate significantly in improving
embedded and remote diagnostic methods for real-driving
conditions by considering availability of historic data from
the vehicle.

REFERENCES

Asad, U. and Zheng, M. (2008). Fast heat release char-
acterization of a diesel engine. International Journal of
Thermal Sciences, 47(12), 1688–1700.

Brunt, M.F.J. and Pond, C.R. (1997). Evaluation of
Techniques for Absolute Cylinder Pressure Correction.
SAE Technical Paper.

D’Ambrosio, S. and Ferrari, A. (2012). Diesel Injector
Coking: Optical-Chemical Analysis of Deposits and In-
fluence on Injected Flow-Rate, Fuel Spray and Engine
Performance. Journal of Engineering for Gas Turbines
and Power, 134(6), 062801.

Garg, P., Silvas, E., and Willems, F. (2021). Potential
of machine learning methods for robust performance
and efficient engine control development. In IFAC-
PapersOnLine, volume 54, 189–195. Elsevier B.V.

Guardiola, C., Pla, B., Bares, P., and Barbier, A. (2018).
An analysis of the in-cylinder pressure resonance exci-
tation in internal combustion engines. Applied Energy,
228, 1272–1279.

Guardiola, C., Pla, B., Bares, P., and Barbier, A. (2021a).
Individual cylinder fuel blend estimation in a dual-fuel
engine using an in-cylinder pressure based observer.
Control Engineering Practice, 109(January), 104760.

Guardiola, C., Vigild, C., de Smet, F., and Schusteritz, K.
(2021b). From OBD to connected diagnostics: A game
changer at fleet, vehicle and component level. IFAC-
PapersOnLine, 54(10), 558–563.

Guillemin, F., Grondin, O., Chauvin, J., and Nguyen,
E. (2008). Combustion Parameters Estimation Based
on Knock Sensor for Control Purpose Using Dedicated

Signal Processing Platform. In SAE Technical Papers,
volume 2008.

Hadler, J., Rudolph, F., Dorenkamp, R., Stehr, H., Hilzen-
deger, J., and Kranzusch, S. (2008). Volkswagen’s new
2.0 l TDI engine for the most stringent emission stan-
dards — Part 1. Technical Report 5.

Joud, L., Da Silva, R., Chrenko, D., Kéromnès, A., and
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