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Abstract: In electric vehicles, it is essential to prevent battery overheating due to excessive
ohmic losses or inadequate cooling. Indeed, the temperature of battery systems significantly
impacts their performance, lifetime, and safety. This paper proposes a predictive cooling
optimization method for the battery thermal management system of heavy-duty fuel cell
electric vehicles. The predictive cooling strategy is based on a model predictive control (MPC)
formulation to maintain the battery temperature in its optimal range (to increase efficiency)
and avoid high-temperature peaks (to increase lifetime and safety). The predictive thermal
management relies on the ohmic losses forecast provided by a predictive energy management
system. Simulations of a real-world driving cycle validate the proposed MPC and assess the
impact of the predictive horizon length, which is critical for thermal management performance.
The comparison against a simple hysteresis control strategy highlights the significant benefits
of the proposed MPC for higher battery efficiency and lifetime.

Keywords: Battery Thermal Management System, Fuel Cell Electric Vehicles, Model
Predictive Control, Predictive Cooling Strategies, Battery Thermal Model.

1. INTRODUCTION

Transportation is one of the most significant sources of
pollutants and greenhouse gas emissions. Nowadays, the
automotive industry endeavors to develop clean energy
vehicles like fuel cell electric vehicles (FCEVs) to reduce
environmental pollution. Considering the high-power re-
quirements of heavy-duty FCEVs, fuel cell and battery
hybrid powertrains are used in these vehicles, and lithium-
ion batteries are widely employed due to their relatively
high energy densities and specific power capacities.

The lithium-ion batteries operate best in a specific tem-
perature range. Outside of this range, high temperatures
can lead to undesirable electrochemical behaviors on the
cell structure. Therefore, developing an effective battery
thermal management system (BTMS) to keep the tem-
perature within a specified range is crucial for extending
the battery life in heavy-duty FCEVs. In general, the
thermal dynamics of battery systems are slow and have
long time constants. Thus, developing predictive cooling
strategies with long horizons can have significant benefits
for increasing battery efficiency and lifetime. To this end,
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designing and validating the BTMS in demanding real-
world driving cycles is essential.

Battery temperatures out of optimal range can accelerate
battery degradation or even cause fatal disasters such as
thermal runaway, battery fire, and explosion. In Wang
et al. (2018), experimental investigations are held in recent
years are reviewed, and the effect of battery temperature
on battery degradation is shown. Passive cooling strategies
to enhance heat dissipation ability are investigated. Wu
et al. (2019) indicate the negative impacts of low and
high temperature on battery systems. Besides restraining
low and high temperatures, the importance of preventing
battery temperature from having fluctuations to have a
uniform temperature distribution is declared and shown.
Liu et al. (2017) point out the importance of keeping Li-ion
batteries within a temperature range to prevent battery
performance degradation and thermal runaway.

The degradation mechanisms of the battery alter depend-
ing on various mechanical and electrochemical processes,
which are affected by different operating conditions. Due
to the complex cell chemistry of the batteries making a
general degradation model and observing the effects of dif-
ferent operating conditions via a general model are rather
challenging. The important point of operating conditions
for this research is that high battery temperatures cause
accelerated degradation due to undesired electrochemical
processes. Alyakhni et al. (2021) present a battery degra-
dation model to show the different interactions between
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Fig. 1. Schematic representation of the interaction between predictive energy and thermal management systems based
on forecasts of route speed and elevation.

battery degradation mechanisms and discuss how to avoid
them with a health-conscious EMS (energy management
system). In Diao et al. (2019), the tested battery cycle
number vs. discharge capacity fade relation is shown for
10 °C, 25 °C, 45 °C, and 60 °C temperature values. The
gradual improvement explicitly verifies the negative effect
of higher temperature on degradation through 60 °C to 10
°C battery temperature. Hannan et al. (2017) indicate the
optimal temperature range with the maximum life cycle as
15 °C to 45 °C for the different charge rates as 1 C, 2 C, and
3 C . Reniers et al. (2019) investigate different degradation
models and the effects of operating conditions on those
degradation models. Although operating conditions affect
degradation differently for different battery degradation
models, it is shown that accelerated degradation depends
notably on high temperature.

BTMS can be categorized into three types based on
different heat transfer mediums: air, liquid, and phase
change material (PCM). Each system has advantages
and disadvantages in terms of cost, maintenance, and
effectiveness. Passive air-cooling systems are commonly
used for their simplicity and electrical safety. Wang et al.
(2016) states that for batteries of high energy density, an
active BTMS is required, and adopting air cooling to active
BTMS is complex and costly. Furthermore, an air-based
cooling system can encounter temperature rise problems
due to its low heat capacity and thermal conductivity.
PCM has received significant attention for its potential
benefits. However, Lin et al. (2021) declare that after
the temperature exceeds the melting point, the cooling
performance of the PCM is reduced. A liquid-based BTMS
has a comparatively high transfer coefficient and thermal
conductivity. Kim et al. (2019) describe the superiority of
liquid cooling over air cooling. Regarding these points in
the mentioned literature, this work adopts a liquid-based
cooling system model.

Although the research on hardware development of BTMS
is rich, the literature on the controller design is relatively

poor. Rule-based controllers have been commonly em-
ployed for battery temperature regulation. For example,
Zhang and Shen (2021) use a hysteresis controller for the
external heating system. The hysteresis range is defined as
1 °C to avoid frequent switching, and the battery temper-
ature is tried to keep at 15 °C. Compared to the maximum
power heating and non-heating cases, the maximum driv-
ing range has been improved using the hysteresis controller
for three driving cycles. However, thanks to information
technology advancements, predictive control strategies can
now be implemented for real-time BTMS control. Xie et al.
(2020) propose a model predictive control (MPC) strategy
for a radiator-based BTMS. The achievement of predictive
control on reference tracking compared with an on-off
controller is designated with a 60 second long predictive
horizon and a 10-second long control horizon. Park and
Ahn (2020) propose a stochastic MPC to obtain future
heat generation for the battery cooling system by using
5 second long prediction horizons. The advantage of an
MPC in comparison to an on-off controller is shown by
simulation.

The literature survey revealed two main research gaps:
Battery thermal management of heavy-duty fuel cell
trucks and predictive cooling strategies with very long
predictive horizons have not yet been investigated. The
present paper fills these gaps by developing cooling strate-
gies that can look ahead even at the entire route, which
might be essential for heavy-duty FCEVs because the
battery thermal dynamics are particularly slow for large
components. A predictive cooling optimization method is
introduced based on an MPC formulation. The MPC is
utilized to exploit a real-world driving cycle forecast and
use long prediction and control horizons in the control
strategy. The real-world driving cycle information is used
in the BTMS as an ohmic losses forecast provided by a
predictive EMS for the whole driving cycle. Using long
prediction and control horizons is critical to keep the
battery temperature in its optimal range and avoid high-
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temperature peaks. The proposed MPC is compared with
a simple hysteresis controller to signify an improvement in
the reference tracking of battery temperature.

The paper is structured as follows: Section 2 introduces
a battery thermal model characterized by a liquid-based
cooling system for the vehicle simulations and MPC
derivation. Moreover, it describes the ohmic losses forecast
derivation and the real-world driving cycles adopted for
validating the control strategy. Section 3 defines the pre-
dictive battery cooling optimization problem and proposes
a quadratic program to solve it. The system capabilities
and necessary output limits are set as the constraints
of the optimization problem. Full-horizon and receding-
horizon MPC are implemented to evaluate the predictive
horizon length requirements. Finally, Section 4 presents
the optimization results and analyzes the outcomes of the
different prediction horizons on the battery temperature.

2. BATTERY THERMAL MANAGEMENT SYSTEM
IN HEAVY-DUTY FUEL CELL VEHICLES

Forecasts of route elevation and vehicle speed are used for
predictive energy management of heavy-duty FCEVs. The
resulting power split also determines a battery ohmic losses
forecast, allowing for predictive thermal management. A
schematic representation of such predictive control func-
tions is depicted in Fig. 1. The EMS defines the power
split of the load demand between the fuel cell and battery
system. The predictive BTMS defines the cooling power
setpoint for the battery cooling system based on the ohmic
losses forecast coming from the predictive EMS.

This paper adopts the predictive EMS developed by Zen-
degan et al. (2021), which optimizes the power split consid-
ering fuel consumption and SoC (state of charge) control as
optimization targets. The predictive energy management
considers speed and elevation forecasts over the entire
route. This feature is the main advantage compared with
other predictive EMSs that use short predictive horizons
(e.g., see Ferrara et al. (2021)). Indeed, due to the slow
thermal dynamics of large battery systems, predictive
BTMS are more effective when considering long predictive
horizons and ohmic losses forecasts.

2.1 Battery Thermal Management System

Model predictive control requires a plant model to predict
the future states/outputs and optimize the control input
sequence. In this case, the BTMS consists of the battery
system and cooling structure shown in Fig. 2, where Q̇loss

represents the heat generation due to ohmic losses and
Q̇chill cooling power absorbed by the chiller. The following
linear model expresses the thermal dynamics of the BTMS:

Cbat Ṫbat = Q̇loss − hbo(Tbat − To) (1a)

Co Ṫo = hbo(Tbat − To)− hoc(To − Tc) (1b)

Cc Ṫc = hoc(To − Tc)− Q̇chill (1c)

where Tbat is the battery temperature, To the oil one, and
Tc the coolant one. Similar notation is adopted for the
thermal capacities Cbat, Co, and Cc. The heat exchange
coefficient at the battery-oil interface is denoted with hbo,
and at the oil-coolant interface with hoc.

Oil

Coolant

Chiller

Battery system
Q̇loss

Q̇chill

Fig. 2. Schematic of a liquid-cooled battery system.

The maximum cooling power that the chiller can provide
is commonly a nonlinear function of the coolant flow,
pressure, temperature, and environmental conditions. This
work assumes, for simplicity, that the maximum cooling
power is constant at 6 kW. The value is based on the
average cooling power observed in a complex nonlinear
model. The power required for the cooling system is ac-
quired through the powertrain and added to the electrical
power demand of the FCEVs.

2.2 Realistic Simulation of Heavy-Duty Fuel Cell Vehicles

The EMS of the FCEV, which is mainly necessary to calcu-
late the electrical power demand and distribute demanded
power, is summarized in Fig. 1. In a hybrid battery and
fuel cell electric vehicle, EMS must be optimized with
respect to driving cycles that represent driver behavior and
road conditions. The simulated driving cycle in this study
that includes vehicle speed, road elevation, and distance
is given in Fig. 3. This driving cycle is highly demanding
with 1200 m inclination, 1600 m declination, and com-
paratively high-speed requisition for the specified heavy-
duty vehicle with 40 tons of vehicle mass. The predictive
EMS architecture includes vehicle dynamics and battery
and fuel cell limitations in the prediction algorithm to
get effective results. The nominal battery energy and the
fuel cell nominal power are configured as 53.5 kWh and
320 kW. The electrical power demand of the FCEVs is
a function based on road elevation, vehicle speed, and
acceleration:

Pel = f(v, α, v̇) . (2)

The detailed formulation presented in Ferrara et al. (2020)
is used to realize the power splitting task shown in (3). The
calculated electrical power demand of the FCEVs, Pel in
(2) is provided by the fuel cell and the battery system:

Pel = Pfcs + Pbat. (3)

The vehicle electrical power split between battery and fuel
cell determined by the EMS are shown in Fig. 3 as Pbat and
Pfcs. The calculated battery supply power, Pbat, is subse-
quently used for ohmic loss power estimations. The ohmic
loss power, Q̇loss caused by battery charging and dis-
charging cycles is a complex electrochemical process that
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Fig. 3. Sample driving cycle, the EMS outputs and
continous-time system response with hysteresis con-
troller.

depends on the power requirement of the vehicle, current
flows, and internal resistance of the battery. The battery
is modeled using a simple equivalent circuit to calculate
the ohmic loss. In the equivalent circuit model, the open-
circuit voltage is represented with an ideal voltage source,
Voc connected in series with the internal resistance, Rint.
The battery current, Ibat, and battery terminal voltage,
Vbat, are included. The battery model defined in Ferrara
et al. (2022) is used for the ohmic loss calculation. In
accordance with the equivalent circuit model, by using
Kirchoff’s law, the battery current can be reformulated as:

Ibat =
Voc −

√

V 2
oc − 4PbatRint

2Rint

. (4)

The ohmic losses are calculated as:

Q̇loss = RintI
2
bat . (5)

The battery internal resistance is assumed to be constant
throughout the calculations. The battery ohmic loss, Q̇loss,
shown in Fig. 3 is estimated using the battery equivalent
circuit model. The dependency of battery ohmic loss

behavior on road elevation and vehicle speed can be
obtained from the Fig. 3. It can be observed that the
comparatively higher ohmic losses are observed around
minutes 150 and 250 due to high elevation changes and
higher acceleration and deceleration values.

Typically, rule-based hysteresis controllers are used due
to their easy implementation and low computational re-
quirements in BTMS. The threshold values of the hys-
teresis controller are chosen as 40 ◦C and 35 ◦C for the
optimal reference tracking. The battery temperature ref-
erence is 40 ◦C. Fundamentally, the cooler operates at full
power when the measured battery temperature is above
40 ◦C, and stops below 35 ◦C. The continuous-time sys-
tem response is represented in Fig. 3 with the hysteresis
controller. The battery temperature peaks around 50 ◦C
cannot be prevented with a hysteresis controller.

3. PREDICTIVE COOLING STRATEGIES FOR
BATTERY THERMAL MANAGEMENT

Predictive control algorithms are widely used for future-
time information exploitation and constraint handling ca-
pabilities. In BTMS applications, predicting future tem-
perature information and optimizing the cooling strat-
egy according to predicted system behavior is beneficial
for efficient temperature control. Nonetheless, predictive
methods must provide an optimal cooling strategy by
associating the real-world driving cycle data; hence the
battery heat occurs depending on drivers’ behavior and
road conditions. In this architecture, the MPC supplies
an optimal solution to the cooling problem by exploiting
the battery ohmic loss forecasted through the EMS. The
objective of the MPC is to predict future states in a
specific prediction horizon while optimizing the control
input Q̇chill within this horizon. Besides optimizing the
control input, input and output constraints are also taken
into account to prevent problems that exceeding system
limits can cause. In order to utilize the defined battery
thermal model (1) in the MPC formulation, it is expressed
as a linear state-space model,

ẋm = Amxm +Bmu+ Emz

y = Cmxm,
(6)

where xm = [Tbat To Tc]
T
represent the system states, the

control input is u = Q̇chill, and the disturbance is set as
ohmic loss power z = Q̇loss, and the system output is taken
as y = Tbat.

3.1 Discrete State-Space Model for MPC

The MPC uses the battery thermal model inside the
control algorithm by employing the discrete-time system
model. The system is discretized with a low sampling fre-
quency to achieve a long prediction horizon and a low num-
ber of decision variables. Due to the low sampling time,
the accuracy of the discretized model is substantial for
the performance of MPC. Besides the state-space system
matrices for the MPC implementation, the disturbance
and control input signals described in the model should
also be in discrete form. It is achieved using the zero-
order hold approach for the state-space model. Q̇loss is
discretized by averaging it over the sampling time interval
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Fig. 4. Discretized system behaviour for battery tempera-
ture, battery ohmic loss power and energy.

to ensure that the ohmic loss energy Qloss is preserved. In
Fig. 4, the discrete-time performance of Tbat and Q̇loss for
60 seconds is demonstrated. The continuous and discrete-
time ohmic loss energy, Qloss plots imply that the total
amount of ohmic loss is kept the same after discretization.

3.2 Definition of Optimization Problem

Based on the generated battery heat forecast estimated in
the EMS, see Fig. 1, a quadratic program formulation is
implemented to optimize chiller power Q̇chill. This section
uses the annotation given in Wang (2009) for the defined
MPC problem formulation. The increment values of the
discrete system states ∆xk

m and output vector yk are
augmented as new state vector for MPC implementation,

xk =
[

∆xk
m yk

]T
. The augmented state-space model is

presented by using the increment values of control input
∆uk and the disturbance input ∆zk:

xk+1 = Axk +B∆uk + E∆zk

yk = Cxk,
(7)

where A, B, E, C indicate augmented state-space matri-
ces. The augmented system output Y over prediction hori-
zon Np is calculated using the incremented control ∆U ,
and disturbance input vectors ∆Z within the prediction
horizon. The compact matrix form for the prediction of
the battery temperature Y can be restructured as,

Y = Fxk +ΦU∆U +ΦZ∆Z, (8)

where F ∈ IRNp×1, ΦU ∈ IRNp×Nc and ΦZ ∈ IRNp×Np

are compound matrices structured for taking the effects
of the states, the control input, and the disturbance input
on the output into consideration. The quadratic objective
function based on the error between the battery tempera-
ture and constant temperature reference, the control input
increment Q̇chill and the slack variable s is defined as,

J = (Yref −Y )TQy(Yref −Y )+∆UTR∆U + sTQss, (9)

with Qy, Qs positive semi-definite, and R positive defi-
nite weighting matrices of the objective function. Strictly
limited output constraints can damage reference tracking
performance. Furthermore, it might be impossible to find
a solution in certain cases due to strict output limits. It
is beneficial to set rather flexible limits to prevent these
scenarios. In this problem, the strict limitation of the
output variable is avoided by integrating a slack vari-
able, s, into the optimization problem with a quadratic
cost function. The control input weighting R is set to a
small value because the chiller dynamics are faster than
60 seconds of sampling time, and it allows to use of the
chiller power aggressively. The relation between the slack
variable weighting Qs and the output weighting Qy is
arranged as Qs = 100×Qy because while integrating the
soft constraints into the optimization problem, keeping the
slack variable at a minimal level is important to increase
the controller performance. In the defined optimization
problem, the limitations for the chiller power and the
optimum temperature range for the battery temperature
are considered. Thus, the input and output constraints of
the optimization problem are defined as follows,

Umin
≤ uk−1 +∆U ≤ Umax

Y min
− s ≤ Y ≤ Y max + s.

(10)

The objective function defined in (9) is minimized in or-
der to find the optimal control input and slack variable,

combined in a vector ξ = [∆U s]
T
:

ξ∗ = argmin
ξ

J,

s.t. : Mξ ≤ γ.
(11)

Since all constraints are linear, they can be expressed in a
compact form with a matrix M and a vector γ. The MPC
algorithm computes ∆U by solving optimization problem
(11) via quadratic programming. The calculated ∆U is
iterated to the solver after initialization, and the control
input u is calculated by summation for each step.

4. OPTIMAL COOLING RESULTS

The chiller power Q̇chill is obtained by solving the defined
optimization problem of the battery cooling system in
Section 3.2 and fed into continuous-time battery model
(6) to realize the battery cooling system simulations.
The simulation results are acquired for both full and
receding prediction horizon optimization approaches, and
the setpoint for the output, Tbat, is taken as constant 40 ◦C
in all solutions. The prediction and control horizons are set
equal, Np = Nc in all scenarios, and only referred to Np

for simplicity.

4.1 Full Horizon Optimization

The full-horizon optimization is realized in this study
to observe maximum improvement in reference tracking
that could be achieved with the MPC. The full horizon
optimization computes the chiller power Q̇chill through
the whole trajectory of heavy-duty FCEV by minimizing
the cost function (9). The prediction horizon Np is set
to the full length of the driving cycle to reach a full
horizon optimal solution. The full-horizon optimization of
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Fig. 5. Full-horizon MPC results for the battery tempera-
ture and cooling power.

Fig. 6. The battery temperature results for 5, 30, 60
minutes, and full-horizon prediction horizons.

the quadratic equations such as (11) could require long
computational time for long trajectories. Thanks to dis-
cretization with a 60 seconds sampling time implemented
in Section 3.1, the full-horizon optimization of the defined
problem is realized in 3 seconds. All simulations are carried
out on a standard office computer with the AMD Ryzen™

7 PRO 5850U CPU and 32 GB of RAM. The results of
the full-prediction horizon MPC are presented in Fig. 5. A
significant improvement in reference tracking is succeeded
with predictive cooling compared to the hysteresis con-
troller shown in Fig. 3. This plot also shows the character-
istics of the control input and the 6 kW input limit.

4.2 Receding Horizon Optimization

The receding horizon optimization provides an optimal
solution for a relatively short time in the future, Np,
and aims at the online implementation of MPC in real-
time applications. It minimizes the objective function (11)
iteratively to compute the control strategy within Np.
The prediction horizon Np is increased gradually, and the
battery temperature is observed for each entity to observe
the effects of different prediction horizons on the controller
performance, tcomp. Due to 60 seconds sampling time, to
acquire, for instance, a 20 minutes prediction horizon, Np

is set to 20 steps. In Fig. 6, the characteristic of the system
output Tbat is depicted for various prediction horizons.
The better reference tracking performance is achieved by

Table 1. The effect of prediction horizon on the
battery temperature peaks.

Np 5 10 20 40 60 80 FH

Tmax
bat

(◦C) 49.7 48.9 46.7 46.1 45.0 45.0 45.0

tcomp (s) 0.2 0.3 1.1. 6.60 14.9 29.7 3.3

Fig. 7. The prediction horizon sensitivity to maximum
cooling power limit.

increasing the prediction horizon. Also, with the increase
in prediction horizon, the improvement in preventing the
peaks of battery temperature can be seen explicitly. The
45 ◦C maximum battery temperature limit is satisfied
with 60 steps of prediction horizon and full-horizon cases.
Nevertheless, it could be observed that from the green and
orange lines in Fig. 6 MPC allows deviations outside of
limits with the help of the slack variable. In the cases of
a constraint violation, the optimization problem can not
find any solution without the slack variable.

Table 1 indicates the maximum battery temperature peaks
and recorded computational times tcomp for the whole
driving cycle with different prediction horizons. The no-
ticeable effect of the prediction horizon on preventing
battery temperature peaks can be seen in this table.
Since the computational complexity of the MPC algorithm
highly depends on the prediction horizon, while decid-
ing the prediction horizon for the defined optimization
problem, the required computational time should also be
considered. Nevertheless, even 29.7 seconds of the highest
recorded computational time is adequate because the real-
time factor calculated by fractioning the computation time
to the driving cycle duration is 1.5 × 10−3 ≪ 1. The
lower computational time obtained with the full horizon
is due to one loop of optimization for the whole trajectory.
Both Table 1 and Fig. 6 shows that after 60 minutes
of prediction horizon the battery temperature response
stays similar. As a result, it is concluded that 60 minutes
of prediction horizon could be applied for this particular
optimization problem.

The effect of the prediction horizon on system performance
could also be used for deciding the chiller power require-
ment. By analyzing the prediction horizon - chiller power
relation given in Fig. 7 considering the chiller power capa-
bility of the system, an effective prediction horizon can be
guessed. Furthermore, unnecessary cooling power enlarge-
ment can be avoided using the same method depending on
the prediction horizon choice. For this purpose, in Fig. 7,
the minimum number of required prediction horizon steps
to stay below 45 ◦C maximum battery temperature limit
is presented with respect to ascending maximum chiller
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power limits Q̇chill. It is observed that with the increment
of the maximum power capability of the chiller, the re-
quired prediction horizon N∗

p decreases exponentially. It
can be concluded that 8 kW of chiller power is sufficient
for this specific battery cooling system; hence after 8 kW
of chiller power, N∗

p nearly stabilizes.

5. CONCLUSION

The work described in this paper shows that a good
reference tracking of the battery temperature can be
achieved by using the proposed predictive cooling strategy
in a BTMS. By investigating the impact of the prediction
horizon on the battery temperature, it is concluded that
high efficiency in cooling performance can be attained with
an appropriately chosen horizon length.

The investigation of desired prediction horizon for alter-
ing maximum cooling power constraints shows that by
increasing the maximum cooling power limit, the required
prediction horizon for keeping battery temperature at the
optimal range could be decreased. Also, this method can
help to decide the feasible prediction horizon according to
the available power capacity of the cooling system.

The battery cooling has been significantly improved with
the proposed predictive strategy compared to the hystere-
sis controller based on a real-world driving cycle. Further-
more, it is expected that such a strategy helps limit the
battery accelerated degradation by avoiding temperature
peaks that cause unwanted chemical reactions.

However, to compensate for the uncertainties caused by
the driver’s behavior, the future work would be the eval-
uation of the uncertainty compensation capability of the
controller regarding various driving cycles forecasted into
BTMS with EMS, and the controller can be modified for
uncertainty compensation.
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