
Residual Policy Learning for Powertrain
Control

Lindsey Kerbel ∗ Beshah Ayalew ∗ Andrej Ivanco ∗∗

Keith Loiselle ∗∗

∗ Department of Automotive Engineering, Clemson University,
Greenville, SC 29607, USA (e-mail:(lsutto2, beshah)@clemson.edu).
∗∗ Allison Transmission Inc., One Allison Way, Indianapolis, IN,

46222, USA (e-mail:(andrej.ivanco,
keith.loiselle)@allisontransmission.com)

Abstract: Eco-driving strategies have been shown to provide significant reductions in fuel
consumption. This paper outlines an active driver assistance approach that uses a residual policy
learning (RPL) agent trained to provide residual actions to default power train controllers while
balancing fuel consumption against other driver-accommodation objectives. Using previous
experiences, our RPL agent learns improved traction torque and gear shifting residual policies
to adapt the operation of the powertrain to variations and uncertainties in the environment. For
comparison, we consider a traditional reinforcement learning (RL) agent trained from scratch.
Both agents employ the off-policy Maximum A Posteriori Policy Optimization algorithm with
an actor-critic architecture. By implementing on a simulated commercial vehicle in various car-
following scenarios, we find that the RPL agent quickly learns significantly improved policies
compared to a baseline source policy but in some measures not as good as those eventually
possible with the RL agent trained from scratch.

Keywords: Residual Policy Learning, Reinforcement Learning, Eco-driving, Gear Shifting

1. INTRODUCTION

With 29% of greenhouse emissions coming from the trans-
portation sector in the United States, new governmental
regulations and incentives are being continuously adopted
(EPA, 2015a) to motivate vehicle original equipment man-
ufacturers (OEMs) to apply various technical solutions in
reducing energy usage and emissions. Several measures
that attempt to influence the driver’s behavior to reduce
energy consumption, collectively known as Eco-driving
strategies, have been proposed to work with highly en-
gineered powertrains including conventional, hybrid, and
electric vehicles (Barkenbus, 2010).
Many of these Eco-driving solutions involving passive
driver advisory tend to rely on driver compliance and
training. Implementing these strategies through active
control systems has shown to offer an significant energy
consumption savings while mitigating the need to rely on
the driver. These solutions use optimal control problem
formulations to optimize the velocity trajectory, modu-
late kinetic energy, and constrain accelerations and are
often integrated into an adaptive cruise control (ACC)
system (Nie and Farzaneh, 2020). In Yoon et al. (2020),
one approach is proposed to optimize traction torque while
still accommodating the driver’s request to manage the
kinetic energy of a commercial vehicle by using radar
information about the preceding vehicle demonstrating a
12% fuel savings.
However, these control methods rely heavily on powertrain
and vehicle models which may be inaccurate in the face

of unknown traffic, vehicle conditions and environmental
variables. Common issues with model-based controls is
the requirement of knowing real-time vehicle and road
parameters such as rolling/aerodynamic resistances and
vehicle mass, for example. Borlaug et al. (2020) showed
that the fuel consumption varies up to 11% due to regional
driving patterns in addition to other factors such as vehicle
characteristics, weather, road and traffic conditions, and
driver tendencies. Despite extensive calibration efforts,
control systems deployed with production vehicles cannot
anticipate all the variations found in real-world driving
scenarios. These systems are often designed to encompass
a broad set of drive cycles, and this leads to compromises
on the achievable performance for a vehicle dedicated to a
specific vocation/fleet.
In a previous work (Kerbel et al., 2022), we presented a
data-driven reinforcement learning (RL) based controller
where a vehicle model is not utilized for the control strat-
egy implementation. RL is fundamentally about learning
the optimal policy from interactions of the RL agent
with the environment without explicit needs for model-
ing. There are indeed several recent applications of RL
to vehicle control including automated lane change ma-
neuvers (Wang et al., 2018), fuel optimal velocity trajec-
tories (Hu et al., 2019), and optimal transmission gear
control (Li and Görges, 2020), all of which are integrated
into ACC. In most of these cases, including our prior
work, the RL agent is trained from scratch. It typically
takes several training episodes before a convergent policy
is found.

Preprints, 10th IFAC International Symposium on
Advances in Automotive Control
Columbus, Ohio, USA, August 28-30, 2022

© 2022 the authors. Accepted by IFAC for publication
under a Creative Commons License CC-BY-NC-ND

111

In this work, we build upon the idea of using an RL-
based controller to assist a driver with optimal power-
train control to improve fuel economy. However, instead
of learning policies from scratch, we set up the RL agent
to learn residual policies that adapt to the actual vocation
of the specific vehicle. The starting policy in this frame-
work is the original powertrain control policy shipped
with the vehicle (which we call the source policy). This
approach is known as residual policy learning (RPL), a
method to utilize RL to continuously improve upon a
predetermined source policy in an uncertain and dynamic
environment (Silver et al., 2018). Johannink et al. (2019)
and Schaff and Walter (2020) demonstrated the potential
of this approach to accelerate training of the RL agent
by boosting data efficiency where pre-designed complex
feedback laws are available as source policies for robots in
a manufacturing environment.
The contribution of this paper is to demonstrate the
application of the RPL approach to driver-assist vehicle
powertrain control using baseline (OEM equivalent) en-
gineered control policies as source policies. The detailed
formulation of the RPL agent is offered and its learning
and ultimate performance is compared against that of an
RL agent trained from scratch. In this application, we
configure the agents to compute both transmission gear
selection and traction torque commands.
The rest of the paper is organized as follows. Section 2
outlines the problem formulation. Section 3 details the
proposed RPL framework. Section 4 presents results and
discussions and Section 5 concludes the paper.

2. PROBLEM FORMULATION

In this work, we consider a commercial vehicle with a
powertrain consisting of a multispeed transmission and an
internal combustion engine where the goal is to provide
driver assistance via powertrain control. To formulate the
driver assistance controller as an RL agent, we model
the environment for the Markov Decision Process (MDP)
to consist of a driver controlling the ego-vehicle while
following a leading vehicle. The state of the environment
is then defined as s = [Ve, Ae, Ades, ng], where Ve is the
ego vehicle’s velocity, Ae is the ego vehicle’s acceleration,
Ades is the driver’s desired input, and ng is the trans-
mission gear (range). The actions a consist of the desired
traction torque and requested gear change (T and ug)
where ugϵ[−1, 0, 1] (downshift, remain in current gear, or
upshift).
We seek a method to utilize the original powertrain control
policy as delivered by the OEM while learning an optimal
residual policy and state-action value through repeated
interactions with the prevailing environment experienced
by the vehicle. To formulate the MDP for this RPL agent,
we consider the same environment model as described
above but we augment the state vector with actions
requested by the default source policies (Ts and ug,s).
The distinction between the formulations of the regular
RL agent and the RPL agent is depicted in Figure 1.
For the RPL agent, the deterministic source actions are
summed with actions sampled from learned residual ac-
tions ar = [Tr, ug,r]. The action vector applied to the

(a) RL Agent (b) RPL Agent

Fig. 1. Formulation of the driver-assistance controllers
with a regular RL agent vs an RPL agent.

environment is then considered the mixed control action
vector am = [Tm, ug,m] solved as (1).

am = as + ar (1)
The next state (s′) of the environment and the rewards
(r) are calculated from the current state and the applied
mixed action through a detailed vehicle model simulation.
In practice, both the state transitions and rewards would
be generated from on-board data, often available as on-
board diagnostics information, or from telematic and edge
devices that log suitably decimated data.
For both of our RL and RPL agents, we define a
multi-objective reward function that balances the driver-
accommodation and fuel consumption reduction goals ex-
pressed through several terms. We seek to minimize the
absolute acceleration error with respect to the driver’s
desired acceleration (|Ades − Ae|) while also minimizing
the fuel rate (ṁf) and the traction torque (T) magnitude.
Further, we penalize gear shifting frequency for driver com-
fort. Another driveability component is to ensure there is
adequate acceleration capability available from the engine
to the driver by considering a power reserve (Pr) term.
Each of these reward components are normalized with
respect to their corresponding maximum values to simplify
interpretations of weight selections as shown below.

r(st, at) =−WA
|Adest −Aet+1 |

∆Amax
−WT

|Tt|
Tmax

−Wfr
ṁft+1

ṁf,max

−Wg|ngt+1
− ngt |

−Wpr
Pr,maxt+1 − Prt+1

Pr,max

(2)
where ∆Amax, Tmax, and ṁf,max are the maximum accel-
eration error, allowed desired torque, and fuel rate. The
maximum power reserve Pr,max is a function of veloc-
ity and is computed from the maximum engine torque
curve in each gear (Ngo, 2012). The weight components
WA,WT ,Wfr,Wg, and Wpr trade-off objectives of min-
imizing the error in the desired acceleration, traction
torque, fuel rate, gear shift frequency, and maintaining
available acceleration. For the comparative studies we
present later, the reward function remains the same be-
tween the RPL and the RL only versions, as they have the
same Eco-driving objectives.

3. RESIDUAL POLICY LEARNING FRAMEWORK

Figure 2 shows a schematic of the learning framework for
the RPL agent. The solid lines illustrate the flow of states
and actions between the environment and the controller
implemented at each step and the dashed lines represent
the information sent to a replay buffer (s, s′, ar, r), where

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

112

Fig. 2. Proposed Residual Policy Learning Architecture

the RPL algorithm samples previous experiences to learn
the residual policy. We use an actor-critic architecture
with a deep neural network for the action policy (ac-
tor, parameterized by θ, denoted πθ) along with a critic
network to approximate a state-action-value function (Q-
value, parameterized by ϕ, denoted Qϕ(s, a)). In the over-
all framework, the actor approximates the optimal residual
actions given the current state to modify the source actions
sent to the vehicle system (in the environment). Through
the interactions with the mixed actions taken (am), the
environment generates the next state and calculates a
reward. The critic uses the reward to approximate a value
for the state-action pair that was implemented in the
environment. In this case, we can consider the Q-value ap-
proximation for the state and residual action pair because
the source actions are considered as states.
Since we have a hybrid action space, we train the actor
network to approximate both the optimal continuous ac-
tion (desired torque, T) and the discrete action (desired
gear change, ug). In our experiments, these actions share
the same network parameters with different output layer
activation functions. The continuous residual torque ac-
tion is considered as a Guassian stochastic policy with the
mean (Tanh function) and a standard deviation (sigmoid
function) as its parameters. The discrete residual gear
action is modeled as a categorical distribution through
a softmax activation function with three discrete action
choices. We factorize the policy into continuous and dis-
crete components by considering them as independent as
described in Neunert et al. (2020). While this holds true in
the practical arrangement of the powertrain control where
one can more or less manipulate gear and torque through
independent actuation, the independence assumption al-
lows a ready factorization of the joint distribution of the
torque and gear actions.
The mixed torque and gear actions are then passed to
the powertrain simulation which enforces constraints con-
sistent with the corresponding components. Specifically,
the computed mixed torque action request is saturated by
the limitations of the engine torque and/or the braking
system. Similarly the requested mixed gear action (sum
of transmission controller output and the residual gear
change request) is limited to one gear change in either
direction and the final gear output is enforced by the
powertrain engine speed limits at the given vehicle speed.

The final available torque and gear actions are applied
to the vehicle model to transition to the next state. The
environment generates reward signals that encompass the
fuel rate (ṁf), the vehicle acceleration (Ae), and gear (ng)
that occurred as a result of the actions currently applied.
These signals are used for computing the total weighted
reward according to (2) that we aim to maximize.
In the next section, we briefly describe the reinforcement
learning algorithms we use to train the actor-critic setup
for the RPL agent as well as the RL only agent.

4. REINFORCEMENT LEARNING ALGORITHM

We have considered several state-of-the-art on-policy and
off-policy algorithms to train our actor-critic networks.
In general, off-policy algorithms such as DDPG (Lillicrap
et al., 2015) and SAC (Haarnoja et al., 2018) are known to
offer better sample efficiencies, especially in high dimen-
sional and continuous spaces. Although the RPL architec-
ture can be implemented alongside any RL algorithm, a
novel off-policy algorithm, known as maximum posteriori
optimization (MPO), was chosen considering that it com-
bines the benefits of on-policy and off-policy algorithms
by drawing from a probabilistic inference perspective to
optimal control (Abdolmaleki et al., 2018). In our exper-
iments, this algorithm demonstrated stable performance
with minimal hyperparameter tuning and did not require
special treatment for the hybrid action space other than
the one described above. Next, we briefly summarize the
key steps of this algorithm as it was implemented for the
RPL controller.
The algorithm starts with a policy evaluation step which
is done via a critic network that approximates the state-
action-value (Q-value) for the policy. To fit the parameters
ϕ for the critic network, a squared loss function is mini-
mized between the current action value for the current
policy iterate Qθk(s, a|ϕ) and an estimated target Q-value,
Qtarget(st, at).

L(ϕ) = E [Qθk(st, at|ϕ)−Qtarget(st, at)]
2 (3)

Several algorithms exist to estimate a target Q-value. A
stable and efficient method that provides low variance
and low bias is desirable. In this work, we adopted a Q-
value target estimation method known for stability and
efficiency, the Retrace algorithm (Munos et al., 2016). We
refer the reader to this original paper for details of the
Retrace algorithm. For now it should suffice that we train
the critic network with the Retrace target to obtain the
Q-value estimate that minimizes the loss function (3) for
the current iterate of the policy.
Given the value function Qθk(st, at) for the current pol-
icy iterate πθk , the MPO algorithm uses an expectation-
maximization scheme to update the policy in two steps (Ne-
unert et al., 2020; Abdolmaleki et al., 2018). First, with
samples from the replay buffer, a non-parametric improved
policy q is constructed to maximize Eq[Qθk(st, at)] with-
out considerable deviation from the current policy. This
optimization problem is posed as:

max
q

Eq(a|s)[Qθk(s, a)]

s.t. Eµ(s) [KL (q(a|s)||πθk(a|s))] < ϵ
(4)

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

113

where µ(s) is the visitation distribution given in the replay
buffer, and the constraint uses a Kullback–Leibler (KL)
divergence to keep q close to πθk limited by ϵ.
The second step fits a new parametric policy πθ to q. The
corresponding optimization problem can be written as:

θk+1 = argmax
θ

Es∼R [KL (q(a|s)||πθ(a|s))] (5)

As mentioned above, given the hybrid action space for
the present problem, the KL divergence constraint in (4)
is implemented in factorized form in two parts: one for
the continuous (torque) policy, and one for the discrete
(gear) policy. Equations (3-5) are solved via a gradient-
based optimization solver Adam (Kingma and Ba, 2015).
The detailed derivations for the MPO algorithm can be
found in Neunert et al. (2020) and Abdolmaleki et al.
(2018). Further implementation details for the present
application can also be found in our straight RL implemen-
tation (Kerbel et al., 2022). Note that the RPL approach
is independent of the RL training framework and any
state-of-the-art RL algorithms could be applied to learn
an optimal residual policy.

5. RESULTS AND DISCUSSION

5.1 Simulation and RPL Settings

The simulation environment (including the vehicle model)
and RPL algorithm were implemented in Python. A com-
mercial vehicle with a conventional internal combustion
engine and 10-speed transmission is modeled to train and
demonstrate the RPL framework in car-following scenarios
using the dynamics of the vehicle model as shown in (6).

dVe
dt

=
1

Meff

[
Tt
rw

+Rr(Se) +Ra(Ve) +Rg(Se)

]
(6)

where Rr(Se) = WCr cosψ(S), Ra(Ve) = 1/2ρCdAfV
2
e ,

and Rg(Se) = We sinψ(Se). Af , C1, ρ, and ψ are the
frontal area of the vehicle, the coefficient of rolling re-
sistance, the air density, and the road grade as a func-
tion of S, respectively. The vehicle’s position, velocity,
weight, effective mass, and wheel radius, are listed as
Se, Ve,W,Meff and rw, respectively. The traction torque
Tt derived by the powertrain and/or service brakes is the
sum of any positive and negative torques applied to the
wheels. The fuel rate is interpolated from a table given as
a function of engine speed and torque. The engine model
limits the torque based on the maximum allowable torque
by the engine at the given engine speed. The negative
torque is distributed first by applying the maximum engine
braking allowed and the remaining torque is applied by the
service brake system to the wheels.
To simulate human-like driving behavior, various driver
models have been proposed. We use a well-established
model designed to simulate a typical car-following scenario
known as the Intelligent Driver Model (IDM). It uses the
relative distance and velocity from the preceding vehicle
to calculate a desired acceleration (pedal input) of a driver
(for the ego vehicle) in the form Ades (Treiber et al., 2000).
Although any type of deterministic or feedback controller
can be used for the source actions, in this work, the source
action for the desired traction torque is a conversion of
the driver’s desired acceleration Ades from the IDM using

the longitudinal dynamics as shown in (6). This effec-
tively assumes the source torque policy to ideally invert
the demanded acceleration. The baseline also utilizes the
desired traction torque directly as calculated for the source
torque action. The source gear shifting policy, which is
also our baseline shifting strategy, implements a simple
instantaneous fuel optimal strategy, where ug is chosen by
minimizing a cost function Jk = ṁf,k+qcug,k for the avail-
able gears. More detailed information can be found in Yoon
et al. (2020). In this case, the source gear controller has
full knowledge of the engine’s fuel efficiency map whereas
the residual action is a learned correction based directly
on the environment interactions.
For both the RL and RPL controllers to be compared in
the next sub-section, the actor and critic networks of each
consist of 3 linear hidden layers (256 units per layer) and
the parameters are randomly initialized. The vehicle model
and agent parameters are listed in Table 1.

Table 1. Vehicle Model and Hyper-parameters

Vehicle Model Hyper-parameters
mass 9070kg actor learning rate 5e-5

Af , Cd 7.71m2, 0.8 critic learning rate 1e-4
∆t 0.2s γ, λ, β 0.99, 0.90, 0.1

rwheel 0.498 Qretrace steps 15

Amax 2(m/s)2 KL:ϵµ, ϵσ , ϵd 0.1, 0.001, 0.1

Cr 0.015 batch size 3072

theadway 3s M action samples 40

As mentioned in Figure 1, one distinction between the
RPL agent and the RL agent is the augmentation of
the source actions to the state vector that allows us to
treat the residual policy as an independent policy as
a function of the states. It is imperative to ensure the
residual policy only enhances the outcome of an already
good source policy; that is, it is important to prevent
negative transfer. To this end, in our implementation, the
residual actions are not combined with the source actions
until the critic loss function from (3) falls below a threshold
(β) in its approximation of the Q-value. Thereafter, the
residual policy is applied and it then learns as a typical
RL algorithm, except with a residual action output and
that the state is augmented with the source actions.

5.2 Analysis and Discussion

For analysis of the RPL scheme, an RL only agent and an
RPL agent were trained equivalently in independent sim-
ulations. Both agents neural networks are initialized with
randomized parameters for the actor and critic and uti-
lize the same reward weights. They train the actor/critic
networks (learn) by gaining experiences (steps taken in
the environment) while following an object vehicle with a
drive cycle velocity profile that is adjusted by a constant
randomly sampled noise. Every sixty seconds the noise is
re-sampled to emulate following a vehicle in randomized
traffic on a given route. For this study, the drive cycle used
for training is a randomized version of a combination of
the FTP and HUDDS urban drive cycles EPA (2015b).
The simulated route is repeated with each cycle where the
agents learn by randomly sampling a batch of previous
experiences every 250 simulation steps (one step consists

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

114

0 100 200 300 400 500
Cycles

2

3

4

5

6

7

8

9
C

yc
le

 M
P

G

Baseline MPG
RL (scratch) MPG
RPL MPG

Fig. 3. Assessment of fuel economy during learning process

Fig. 4. Comparison of RL and RPL Performance

of an action taken in the dynamic environment). During
the training process, the actions are sampled from the
policy’s distribution to ensure all actions are explored. As
mentioned previously, the residual actions from the RPL
agent are not applied until the critic is properly trained
whereas the RL agent directly applies its policy actions
throughout the entire simulation cycle.
To evaluate the learning performance of the two agents,
the trained agents are simulated after each intermediate
training cycle without noise added to the drive cycle.
In these evaluations, the action is taken directly as the
highest probability action of the policy. Figure 3 illus-
trates the evaluated fuel economy measured in miles per
gallon (MPG) progression throughout the training cycles.
It shows how the RL agent learning from scratch requires
numerous cycles before it consistently maintains an im-
provement in fuel economy while the RPL agent is quick
to outperform the source policy. In fact, once the RPL
agent is utilized (about 70 cycles), the fuel economy with
the RPL agent is rarely less than the baseline (equivalent
to the source) policy’s MPG. This demonstrates that it is
possible to train an RPL agent directly on a real vehicle by
utilizing the highly developed OEM (as shipped) policies.
After training both agents to convergence, a portion of
the evaluation cycle is shown in Figure 4 to demonstrate
the actions presented by the baseline (driver only), the
RL agent, and the RPL agent. At this point, the rewards
are no longer significantly increasing with additional con-
tinued learning cycles. The differences in the final gear
and traction torque are shown where both the RL and
RPL agents tend to shift to a higher gear earlier and
more frequently leading to a generally more optimal engine
performance with a similar velocity profile to the baseline.

A stochastic evaluation with the converged agents is simu-
lated using three standard drive cycles for the leading ve-
hicle including the FTP/HUDDS and two European urban
drive cycles: Artemis (Urban and Road), and WLTP (Liu
et al., 2017) modified for heavy-duty vehicles. In this
evaluation, noise was added to the velocity profiles to
demonstrate the generality of the controllers in various and
uncertain environments. The driver-only baseline, RL only
agent, and the RPL agent were simulated 25 times for each
of the three stochastic drive cycles. Table 2 summarizes
these evaluations using a mean and standard deviation of
the cycle fuel consumption (MPG), the root mean square
error (RMSE) between the desired and actual acceleration,
and the mean number of gear changes applied throughout
each of the simulated cycles. In each case, the overall cycle
travel time was minimally affected.

Table 2. RL and RPL Controller Results
Cycle: FTP/HUDDS

Baseline RL RPL
MPG 7.34± 0.11 8.33± 0.16 8.07± 0.21

% Difference − +13.45% +9.85%

Accel RMSE (m/s2) 0.36 0.49 0.48

of Shifts 464 452 610

Cycle: Artemis Urban
MPG 6.35± 0.10 7.25± 0.12 6.74± 0.165

% Difference − +14.22% +6.10%

Accel RMSE (m/s2) 0.39 0.58 0.55

of Shifts 415 460 559

Cycle: WLTP
MPG 7.64± 0.11 8.24± 0.14 8.09± 0.17

% Difference − +7.81% +5.83%

Accel RMSE (m/s2) 0.34 0.42 0.44

of Shifts 247 216 291

Both RL and RPL agents show a significant improvement
in fuel economy while maintaining a similar balance with
driver accommodation and travel time. To achieve Eco-
driving strategies, the accelerations are limited by the
residual traction torque as seen by a slightly higher acceler-
ation error with both agents compared to the baseline. The
RL and RPL agents often request a higher gear than the
source policy to reduce the engine speed typically leading
to a lower fuel rate. The weights in the reward function are
adjusted via experimentation to balance these objectives
so we can ensure to follow the desired velocity profile
(based on the driver’s request) and limit over-shifting. The
RL agent consistently demonstrates a more fuel beneficial
policy in all three drive cycle evaluations as seen in Table
2, but only after training for over 200 cycles.
As current RPL work has focused on continuous actions for
robots (Barekatain et al., 2019), to our knowledge, this is
the first implementation on a vehicle with a hybrid action
space. Directly adding a residual to a continuous action is a
natural corrective adjustment as the output of the network
has a distribution with a mean value. In the case of the
discrete actions, where we simply add the residual action
(desired gear shift) to the source action, a bias towards
the source policy is seen in the final mixed action. The
action choice is only allowed to modify the source action in
one direction as the output of the RPL actor network is a
categorical probability of which action to choose. Summing
these probabilities also leads to a bias as the probability of

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

115

the source action chosen is one (for a deterministic policy),
but the probabilities for the residual three action choices
sum to one, meaning the source action will always have
the highest probability. This explains the difference in the
achieved performance of the RPL agent with respect to
the RL agent that does not use a source policy.

6. CONCLUSION

In this work, we proposed and demonstrated a novel
method that can build on previously engineered power-
train control policies via a residual policy learning agent
for active Eco-driving assistance. The RPL agent can learn
to adapt the OEM policy shipped with the vehicle to the
uncertainties and variations found when driving in the
vehicle’s actual real-world environment. We observed up
to a 10% fuel economy improvement with the RPL policy
with respect to a baseline policy that assumes access to
information about the vehicle’s engine efficiency maps.
The RPL agent was compared to another learning-based
controller where the action is taken entirely from an RL
agent that is trained from scratch. The primary benefit
of the RPL agent consists of being able to learn from
a source policy before its applied to a vehicle, thus al-
lowing it to learn quicker. It improves upon pre-existing
knowledge by using interactions from the environment
to adapt and adjust the actions for better performance.
However, despite the faster learning compared to the RL
agent, a bias was observed in the RPL agent’s choices
towards that of the source policy, which explains why
the ultimate performance of the RPL agent still leaves
room for improvement. Future research is aimed at how to
remove this bias by perhaps some sort of adaptive mixing
of the source policy and the residual policy.

REFERENCES
Abdolmaleki, A., Springenberg, J.T., Tassa, Y., Munos,

R., Heess, N., and Riedmiller, M. (2018). Maximum a
posteriori policy optimisation. CoRR, abs/1806.06920.

Barekatain, M., Yonetani, R., and Hamaya, M. (2019).
MULTIPOLAR: multi-source policy aggregation for
transfer reinforcement learning between diverse environ-
mental dynamics. CoRR, abs/1909.13111.

Barkenbus, J. (2010). Eco-driving: An overlooked climate
change initiative. Energy Policy, 38, 762–769.

Borlaug, B., Holden, J., Wood, E., Lee, B., Fink, J.,
Agnew, S., and Lustbader, J. (2020). Estimating region-
specific fuel economy in the united states from real-
world driving cycles. Transportation Research Part D:
Transport and Environment, 86, 102448. doi:10.1016/j.
trd.2020.102448.

EPA, O.U. (2015a). Sources of greenhouse gas emissions.
URL https://www.epa.gov/ghgemissions/sources-
greenhouse-gas-emissions.

EPA, O.U. (2015b). Vehicle testing regulations.
URL https://www.epa.gov/vehicle- and- fuel-
emissions-testing/vehicle-testing-regulations.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).
Soft actor-critic: Off-policy maximum entropy deep re-
inforcement learning with a stochastic actor. CoRR,
abs/1801.01290.

Hu, B., Li, J., Yang, J., Bai, H., Li, S., Sun, Y., and Yang,
X. (2019). Reinforcement learning approach to design

practical adaptive control for a small-scale intelligent
vehicle. Symmetry, 11, 1139. doi:10.3390/sym11091139.

Johannink, T., Bahl, S., Nair, A., Luo, J., Kumar, A.,
Loskyll, M., Ojea, J.A., Solowjow, E., and Levine, S.
(2019). Residual reinforcement learning for robot con-
trol. In 2019 International Conference on Robotics and
Automation (ICRA), 6023–6029. doi:10.1109/ICRA.
2019.8794127.

Kerbel, L., Ayalew, B., Ivanco, A., and Loiselle, K. (2022).
Driver assistance eco-driving and transmission control
with deep reinforcement learning.

Kingma, D.P. and Ba, J. (2015). Adam: A method for
stochastic optimization. International Conference on
Learning Representations.

Li, G. and Görges, D. (2020). Ecological adaptive cruise
control for vehicles with step-gear transmission based
on reinforcement learning. IEEE Transactions on Intel-
ligent Transportation Systems, 21(11), 4895–4905. doi:
10.1109/TITS.2019.2947756.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. (2015).
Continuous control with deep reinforcement learning.
CoRR, abs/1509.02971.

Liu, Y., Martinet, S., Louis, C., Pasquier, A., Tassel, P.,
and Perret, P. (2017). Emission characterization of
in-use diesel and gasoline euro 4 to euro 6 passenger
cars tested on chassis dynamometer bench and emission
model assessment. Aerosol and Air Quality Research,
17. doi:10.4209/aaqr.2017.02.0080.

Munos, R., Stepleton, T., Harutyunyan, A., and Belle-
mare, M.G. (2016). Safe and efficient off-policy rein-
forcement learning. In Proceedings of the 30th Inter-
national Conference on Neural Information Processing
Systems, 1054–1062. Curran Associates Inc.

Neunert, M., Abdolmaleki, A., Wulfmeier, M., Lampe, T.,
Springenberg, J.T., Hafner, R., Romano, F., Buchli, J.,
Heess, N., and Riedmiller, M.A. (2020). Continuous-
discrete reinforcement learning for hybrid control in
robotics. CoRR, abs/2001.00449.

Ngo, D. (2012). Gear shift strategies for automotive
transmissions. Ph.D. thesis, Mechanical Engineering.
doi:10.6100/IR735458.

Nie, Z. and Farzaneh, H. (2020). Adaptive cruise con-
trol for eco-driving based on model predictive control
algorithm. Applied Sciences, 10, 5271. doi:10.3390/
app10155271.

Schaff, C.B. and Walter, M.R. (2020). Residual policy
learning for shared autonomy. CoRR, abs/2004.05097.

Silver, T., Allen, K.R., Tenenbaum, J., and Kaelbling,
L.P. (2018). Residual policy learning. CoRR,
abs/1812.06298.

Treiber, M., Hennecke, A., and Helbing, D. (2000). Con-
gested traffic states in empirical observations and micro-
scopic simulations. Physical Review E, 62, 1805–1824.
doi:10.1103/PhysRevE.62.1805.

Wang, P., Chan, C., and de La Fortelle, A. (2018). A
reinforcement learning based approach for automated
lane change maneuvers. CoRR, abs/1804.07871.

Yoon, D., Ayalew, B., Ivanco, A., and Loiselle, K. (2020).
Predictive kinetic energy management for an add-on
driver assistance eco-driving of heavy vehicles. IET
Intelligent Transport Systems, 14. doi:10.1049/iet-its.
2020.0380.

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

116

