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Abstract: Expert human drivers can execute emergency steering actions to avoid sudden events
like a deer crossing the road. However, justifying beyond-the-limit emergency maneuvering
for automated driving systems is exceptionally challenging. Emergency maneuvering often
requires non-linear control policies without stability guarantees. Liability concerns, ethics,
lack of safety guarantees, and non-linear system dynamics convolute an already complicated
problem. Against this backdrop, we propose a principled approach to justify a particular
type of emergency steering in safety-critical situations. A limit-handling controller is justified
and deployed to execute the emergency maneuver upon a conventional controller’s formally
verified incapability to handle. We claim this check justifies the execution of the emergency
maneuver as we show failure is mathematically inevitable otherwise. The simulation-based
experimental validation shows that using backward reachability analysis, the proposed approach
can determine emergencies. The validation justifies using limit-handling controllers for collision
avoidance in a scenario where the baseline controllers fail catastrophically.

Keywords: Automated vehicles, safety guarantee, vehicle maneuver, reachability analysis,
formal verification

1. INTRODUCTION

Safety is a major concern holding back the widespread
deployment of Automated Driving Systems (ADS). Se-
rious issues have been raised by the media, authorities,
and academia [Shafaei et al. (2018)]. Contrary to human
drivers whose liability could be accounted for by existing
law and insurance, the liability of ADS remains unsettled
with a myriad of ethical and legal complications.

The need for safety guarantees motivates ADS developers
to conduct rigorous design studies. However, we argue
that the need for safety guarantees often leads to over-
conservative solutions that compromises vehicle perfor-
mance. Mathematical safety guarantees are often confined
to well-defined and conservative control regions. A com-
mon example of such a limit is the vehicle maximum yaw
rate, which is regulated for getting stability guarantees.
However, this may exclude certain beyond-the-limits op-
erations that have the only non-zero chance of saving the
vehicle from a collision in emergency situations, i.e., opera-
tions that are technically the best to do in an emergency. In
other words, having these conservative control constraints
is good for liability report but limits the capabilities of the
ADS in challenging situations. For example, a sudden deer
crossing can quickly turn a safe driving scene into a emer-
gency setting unexpectedly, where only extreme steering
control beyond the conservative constraints may lead to
collision avoidance. Nevertheless, the common practice is
to ignore these edge cases, as extreme situations are rare
and generally out of liability concerns.

⋆ † Equal contribution

We approach this problem from a reverse angle: when
faced with an edge case, we first try to get a mathematical
guarantee that a collision is imminent, if and only if we
can get this guarantee, then we seek alternative controllers
that have the capability to handle the situation (Fig. 1).
We argue that this backward reachability check justifies a
limited excursion beyond the conservative control region.

Safety verification can be performed either using sample-
based or formal methods[Zhao et al. (2022)]. Backward
reachability (BR) analysis is a formal approach for safety
verification for dynamical systems [Chen and Tomlin
(2018)]. It provides a distribution of states that will ab-
solutely end up in a defined target set of states within
certain moments into the future. The guarantee in this
verification comes from the fact that BR solves Hamilton-
Jacobi-Issac equations to exploit the worst of all possible
actions of adversarial disturbance and all possible benefi-
cial ego actions.

Models define belief on what is possible and what is not.
Models used for vehicle planning, control and simulation
often come in different levels of fidelity. Certain aspects of
the modeling (such as tire model) have major influence
on the model dynamics outcome for aggressive maneu-
vers, while some other dynamics (such as yaw dynam-
ics) are more consistent across different modelling levels
[Berntorp et al. (2014)]. Also certain high fidelity models
allow the capturing of particular vehicle features such as
controllable limited-slip differential and individual wheel
braking [Subosits and Gerdes (2021)]. In order to make
mathematical guarantees on vehicle control, we argue that
the different modelling fidelity for planning, control and
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Fig. 1. Overview of emergency maneuver justification. In
the backward reachable tube views, the red areas show
collision states to avoid and the blue areas are the
backward reachable tube of the corresponding colli-
sion states at the beginning. The forward reachable
set view is an alternative way to visualize the situ-
ation: when the obstacle is conventionally avoidable
as in (a), the planner, controller and justification
models can produce states outside of undesired state
set (red area); when the obstacle is conventionally
unavoidable as in (b), none of the planner, controller
or justification models can produce states outside of
undesired state set. However, with a new justification
model for the beyond-the-limit controls (transparent
yellow area), some safe trajectories can be found.

simulation should be bridged in a certain manner to allow
for comparison or judgement. We use differential inclusion
as such a means to allow certain assertions to be made on
the feasibility of controllers for a specific scenario.

Here we propose a principled approach for justifying emer-
gency maneuvering in emergency situations using BR anal-
ysis. The main objective is to ensure that the controller
never leaves the conventional control domain unless it is

absolutely necessary. To this end, we first use the for-
mal theoretical guarantees of backward reachability to
determine whether the system is in an avoidable collision
situation. After this step, we use a principled approach
to look for a justifiable emergency maneuver beyond the
conventional control-based vehicle model. Our analysis
shows that it is possible to avoid an accident otherwise
unavoidable with this beyond-the-limit control deploy-
ment. Experimental validation shows that the proposed
framework is safer in emergency situations compared to
baselines.

The main contributions can be summarized as follows:

• An investigation of relationship between models used
in planner, controller and simulated environments.

• A formal definition of an emergency situation in driv-
ing automation using Backward Reachability (BR).

• Justifying whether the current controller (or any
controller based on the same system dynamics model)
will lead to unavoidable collision by BR analysis.

• A principled approach to justify beyond-the-limit
controllers designed under a different set of system
dynamics. Our algorithm guarantee that the new
controller has the capability to turn the scenario from
unavoidable to avoidable.

2. RELATED WORK

Beyond the Limit Driving with Drifting. Besides
being a motor-sport stunt, vehicle drifting has been rigor-
ously studied by academia for the past two decades [Ono
et al. (1998)]. Drift equilibrium [Velenis et al. (2009)] and
various other techniques have been proposed to sustain
drift motion, including feedback linearization [Voser et al.
(2010)], model inversion [Hindiyeh and Gerdes (2010);
Goh et al. (2018)], model predictive control [Acosta et al.
(2018); Arab and Yi (2020)], and reinforcement learning
[Cai et al. (2020)]. The next challenge would be to handle
the transition of such drift motion to other more conserva-
tive driving styles. Directly solving nonlinear programming
(NLP) problem [Goh (2019)] and feedback-feedforward
control [Zhao et al. (2021)] are among such possible so-
lutions. With justified high sideslip motion, road applica-
tions such as post-collision recovery [Yin et al. (2020)] can
be considered.

However, these beyond-the-limit vehicle drift controllers
have not been justified for road use, as they are deemed
too risky to be deployed in real traffic.

Backward Reachability Analysis. Backward reach-
ability analysis performs formal verification checks of
whether system can reach or avoid certain target sets
of states in the near future. The absolute sureness in
the verification is guaranteed by the fact that BR solves
Hamilton-Jacobi-Issac equations to exploit the worst of all
possible actions of adversarial disturbance and all possible
beneficial ego actions. BR has been applied to manag-
ing collision-free multiple unmanned aerial vehicle (UAV)
planning [Chen et al. (2017)], as well as to motion planning
of multirotor robots [Seo et al. (2020)], and for vehicle safe
parking [Jiang et al. (2020)]. However, BR suffers from the
“curse of dimensionality” and has not been used for jus-
tifying emergency maneuvering for autonomous driving,
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Fig. 2. The model fidelity pyramid: the width qualitatively
represent the fidelity level

where enhanced maneuvering skill is equally important as
assurance for maneuvering safety. The usual practice for
ensuring driving safety is overestimating risks and setting
conservative control constraints. In light of the potential of
BR, we focus on using lower dimensional BR to search and
find a capable maneuver. BR can be applied to the problem
of autonomous vehicle planning and control to justify when
beyond-the-limit driving is absolutely necessary.

3. MODELS FOR PLANNING AND CONTROL

The operation of specifying and achieving motion tasks for
the automated vehicle system is referred to as planning
and control. Often the task of planning and the task of
control are separated as sequential procedures [Clauss-
mann et al. (2020)]. Here we investigate the hierarchical
relationship between planning, control, and the models
used for them, and how this relationship interpreted in
different forms can produce certain affirmative assertions
towards possible planning and control outcome.

3.1 Model Fidelity Hierarchy

Following the commonly accepted sequential relation be-
tween planning and control, the different models involved
in the vehicle planning control action is illustrated in Fig.
2, where a relatively simple and fast model is used for the
planning, and a properly fitted model with relatively low
dimensions is used for control. Then in virtual simulation
platforms, usually a high fidelity vehicle model is used to
simulate the outcome of applying planning and control
strategies in targeted scenarios. Such simulations however,
still have a fidelity gap between them and the real world
physical driving.

3.2 Model-based Assertions

Models define belief on what is possible and what is not.
There are limited assertions that we can make about the
outcome of planning and control due to the fact that “no
models are correct” with respect to the physical world.
However, by assigning certain credibility to simulation
realism, and certain credibility to the approximate “cor-
rectness” of planning and control models, we can gener-
alize some interesting arguments. First, we make certain
assumptions to lay the grounds for discussion:

Assumption 1. The model used for planning (A) is an
under-approximation of the controller used model (B).
In dynamical system terms, this indicates that the exact
dynamic inclusion of the controller-used model (B) is

All possible states at T in planner  model A

All possible states at T in control ler  model B

Fig. 3. The planner model is an under-approximation of
the controller model (Assumption 1). Starting from
the same initial condition, all possible outcomes of
the planner model (blue shaded area) is captured by
the controller model (green shaded area). The actual
outcome in two models under the influence of the
same control sequence should be considerably close
(Assumption 2).

always a superset of the exact differential inclusion of the
planner used model (A):

FA(x, t) ⊂ FB(x, t),∀x ∈ Rn, t ∈ R (1)

where the exact differential inclusion of a dynamical model
A: ẋ = fA(x,u, t) is the exact set of all possible state
derivatives ẋ given an arbitrary state x and any al-
lowed control input u ∈ U : FA(x, t) = {ẋ ∈ Rn|ẋ =
fA(x,u, t),∀u ∈ U}.
This assumption is properly justified in the sense that the
responsibility of the planner is to only generate feasible
trajectories that the corresponding controller can handle,
otherwise the risk of controller not being able to catch
up with planner can lead to catastrophic consequences
such as collisions. This is illustrated in Fig.3. It should be
noted that this assumption does not hold true universally,
it is possible that planners can generate trajectories that
are not feasible for controllers to follow, in which case
additional check needs to be performed to ensure the
drivability of such trajectories [Schürmann et al. (2017)].

Assumption 2. The models used for planning (A) and
control (B) are Tϵ-close to each other, and Tϵ-close to the
simulation model (C) in the part S0 ⊂ S of the full state
space S, such that the modelling error between two models
eAB , eAC , eBC represented by state deviation in finite time
T starting from the same initial condition x0 ∈ S and
control input u(t) is bounded by a small constant ϵ ∈ R:

∀x0 ∈ S0, ei,j = ∥xi(T )− xj(T )∥ ≤ ϵ (2)

where i, j ∈ {A,B,C} and i ̸= j, the states under different
models follow their respective model dynamic:

xi(T ) =

∫ T

0

fi(x,u, t)dt+ x0, i ∈ {A,B,C} (3)

and the control invariance is implicitly assumed, i.e., as
long as the initial condition x0 stays within the set of
modelling interest S0, then all resulting states following
the control strategy u will also lie within the same set:
∀x0 ∈ S0,u ∈ U , t ∈ R+,xi(t) ∈ S0, i ∈ {A,B,C}.
This assumption is often the case for vehicle simulations,
where the planner and controller usually models well the
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linear dynamic behavior around the stable equilibrium of
the vehicle system. While the simulation model is often
more powerful and is designed to be capable of covering
dynamics in non stable regions, those regions are less
utilized by conventional planners or controllers.

With the above two assumptions, we can make the follow-
ing assertions.

Assertion 1. If a viable trajectory exists in the planner
model (A) for a specific scenario, then there exists at least
a viable trajectory in the controller model (B).

Proof. This assertion directly follows assumption 1, since
the planner model (A) under-approximates the controller
model (B), by definition of differential inclusion, a trajec-
tory in under-approximated dynamic can always be repre-
sented by its counterpart, the approximated dynamic. This
assertion is important in guaranteeing feasible planner
trajectory feed into the controller, and therefore is a good
practice for planning and control engineers.

Assertion 2. If no viable trajectories exist in the planner
model (A) for a specific scenario, then there is almost no
viable trajectories in the controller model (B).

This “almost” no viable trajectories argument indicates
that the planner model has captured the majority of
possible outcomes that can happen in the controller model.
This however does not rule out the possibility that there
exists a few viable trajectories in the controller model
which are not captured by the planner model. In order
to have a stronger argument about the planner result, we
introduce the following corollary on a justification model.

Corollary 1. Given a model (M) that over-approximates
the controller model (B) in the system region of interest
S0 ⊂ S: FB(x, t) ⊂ FM (x, t), if no viable trajectories
exist in the model (M), then there is certainly no viable
trajectories in the controller model (B).

Proof. this is again a direct result from Assumption 1 and
the property of differential inclusion, and can be proved by
contradiction. If such a viable trajectory η indeed exists in
the controller model (B), then since FB(x, t) ⊂ FM (x, t),
the same trajectory should exist in the model (M). This
contradicts the starting assumption. Therefore the original
statement is true.

We call the model (M) the justification model. And we will
show in the next section how this corollary can be used to
justify unconventional emergency maneuvers when such a
model (M) predicts the failure of any controllers modelled
under the linear region of the vehicle dynamics.

4. PROPOSED METHOD

The main objective of this work is to justify a beyond-
the-limit vehicle controller in constant-speed emergency
scenarios at the absolute necessity. The constant-speed
constraint is assumed to simplify the model and reachabil-
ity calculations, and has application in cases of high-speed
heavy vehicles [Liu et al. (2016)] as well as low tire-road
friction scenarios.

4.1 Problem formulation

The problem can be broken into two parts: (1) estimating
the potential failure of the conservative control policy and
(2) finding a new controller with which the emergency
might be mitigated. We are not looking for a stability
guarantee for the new controller. Instead, we argue that
selecting a new controller with potential for collision
avoidance instead of certainty for failure is still a good
strategy.

Problem 1. Given a driving scene with a set of obser-
vations Ot, ego vehicle state xt, and a backward event
horizon [t0, tf ], we are interested in finding whether the
current state xt is in the backward reachability tube of a set
of undesired states T = p(Ot, tf ). Where p is a perception
function that maps the observations and the time horizon
to a set of undesired states in the ego-vehicle coordinate
system. If the check fails, then we are also interested in
finding a new controller that would push the vehicle state
out of the backward reachability tube.

4.2 Vehicle models

A baseline controller, Stanley lateral control [Thrun et al.
(2006)] is based on a linear bicycle model with infinite
cornering stiffness:

ẋ = v cos(ϕ)

ẏ = v sin(ϕ)

ϕ̇ =
v

L
δ

(4)

where δ is the steering angle, L is the distance between
the front axle and rear axle. The stable operation of the
Stanley controller is restricted to a region where this linear
bicycle model largely holds for each speed v. For the
constant speed that we are assuming for this scenario,
the stable performance range for Stanley controller is
empirically tested to be: |ϕ̇| ≤ 0.20[rad/s] in simulation
for the particular vehicle configuration used in this work,
which can be found in Table I in [Zhao et al. (2021)].

In order to justify this baseline controller for incoming
situations, we need a justification model (M) for it. The
Dubin’s car model is a well-studied model for backward
reachibilty analysis [Chen et al. (2018)]. The system dy-
namics is represented with the following equations:

ẋ =

ẋẏ
ϕ̇

 =

[
v cosϕ
v sinϕ

ω

]
(5)

where ẋ and ẏ are the time derivatives of the x and y
positions respectively. ω is the angular velocity and also
the control input, v is velocity. This model can serve as our
justification model (M) for the conservative baseline con-
troller, since the Dubins model is an over-approximation
of the controller-based model with an assumption that the
vehicle speed is constant (proof in Appendix A), and that
the control input ω is over-approximated by the range
|ω| ≤ 0.21[rad/s]:

FB(x, t) ⊂ FM (x, t) (6)

therefore based on Corollary 1, we can use the Dubins car
model as a justification model (M) to justify whether the
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baseline controller will be in an unavoidable collision using
the minimal backward reachable tube.

4.3 Minimal backward reachable tube

The above dynamical system consists of system states x
and the system equation:

dx

dt
= ẋ = f(x,u,d) (7)

where f(·) is the system dynamics, u and d are control
inputs by player I (ego actor) and player II (adversarial
actor). It is assumed that f(·) is uniformly continuous,
bounded and Lipschitz continous in x for fixed u and d.

A system trajectory from time t0 to tf under the inputs u
and d can be conveniently represented by ζ(·) ∈ Rn:

d

dt
ζ(t;x, t0, tf ,u(·),d(·))

= f(ζ(t;x, t0, tf ,u(·),d(·)),u(t),d(t))
(8)

The minimal backward reachable tube (minBRT) [Chen
and Tomlin (2018)] represents the set of states x ∈ Rn

at t = t0 from which the system can be driven into some
target set T within a time horizon t ∈ [t0, tf ] regardless
of any action u taken by the ego actor. The minBRT for
non-anticipative adversarial actor strategies d = γ ∈ Γ(t)
can be expressed as:

A(t0) = {x : ∃γ ∈ Γ(t),∀u(·) ∈ U,∃t ∈ [t0, tf ],

ζ(t;x, t0, tf ,u(·), γ[u](·)) ∈ T } (9)

where Γ(t) is the set of all non-anticipative strategies, γ is
a strategy belonging to Γ(t) and reacting to u(·), ζ(·) is the
trajectory of system state starting from time t0 till time tf
for the control policy u(·) of ego actor and d(·) = γ[u](·)
of adversarial actor, T is the target set defined at time tf .
In this work, the adversarial input (disturbance d) can be
included during verification to account for modeling error
or extra safety margin, see Fig.4.

Property 1. The minBRT only grows as tf − t0 increases
(assuming tf is fixed):

A(t0) ⊂ A(t′0) for t′0 < t0 < tf (10)

This property can be easily proven based on Theorem 2
in [Mitchell (2002)]. The implication of this property is
that one needs not look further than the minBRT with a
slightly over-estimated time interval [t0, tf ] from current
time t0 to over-estimated time of reach tf into the target
set, if the control goal is to avoid going into the target set.

To calculate the minBRT, an abstract value function V (x)
is constructed such that the states leading to negative
values in V (x) corresponds to the minBRT A(t0):

A(t0) = {x ∈ Rn : V (x) < 0} (11)

A toolbox [Bansal et al. (2017)] has been developed to
calculate the minBRT by solving the Hamilton-Jacobi-
Issac equations leading to V (x), and is used here for the
backward reachability (BR) verification.

4.4 Justifying emergency maneuvering

With the definition of minBRT in the previous section, it
is now possible to combine minBRT and the justification

Fig. 4. (a) A vehicle with constant speed (orange arrows)
v = 15m/s takes maximum heading rate under con-

straint ϕ̇max = 0.20rad/s and collides with the unde-
sired target set (red) by staying inside the minBRT
(cyan). (b) A vehicle with constant speed (orange ar-

rows) v = 15m/s takes maximum ϕ̇ under constraint

ϕ̇max = 0.25rad/s and is able to steer away from
the undesired target set (red) by nearly touching the
minBRT (cyan). The vehicle is initially in minBRT
then comes out of minBRT because of disturbance
d = [0.25, 0.25, 0]T playing a larger propagated role
when vehicle is further away from the target. (c) If
disturbance d is removed from (b), then the vehicle is
always outside of the minBRT.

model (M) to instantiate Corollary 1 and produce the
following proposition to prove the certainty of failure for
controllers whose controller-based models (B) are over-
approximated by the justification model (M).

Proposition 1. If the current vehicle state x is in the
the minBRT: x ∈ A(t0) of the justification model (M),
all possible control policies Π whose dynamics are over-
approximated by the justification model (M) will fail, and
the scene will end in an undesired state within horizon tf .

Proof. By definition, x0 is in A(t0). Then, following the
BRT assumptions and proofs [Mitchell (2007)], regardless
of how the control policy π ∈ Π is selected, with the worst
of all possible actions of adversarial disturbance and all
possible beneficial ego actions, it indicates that there is no
solution that the ego-vehicle will end up in a safe state in
the event horizon tf .
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An example of unavoidable collision is illustrated in Fig.
4(a). The vehicle follows a simplified Dubin’s car dynam-

ics, with a fixed v and a ϕ̇ range of [−ϕ̇max, ϕ̇max] =
[−0.2, 0.2](rad/s). To avoid hitting undesired target set

(red circle), maximum ϕ̇max is adopted. However, since
the vehicle is inside the minBRT since the beginning, the
collision with the undesired target set is inevitable.

With a new (and more capable) controller candidate
whose controller based dynamics is under-approximated
by another justification model M’ (Dubins car model with

ϕ̇max = 0.25rad/s), if the vehicle’s initial state is outside
the minBRT in M’, then the new controller will be able
to produce a viable control to avoid the undesired target.
The illustration is shown in Fig. 4(b) and 4(c). As can
be seen in the figure, with the new justification model, a
collision-free trajectory can be generated.

4.5 Beyond-the-limit controller

Controllers that operate past the linear operating range
of vehicles are considered beyond-the-limit controllers.
Car racing maneuvers such as trail-braking, pendulum
turn [Velenis et al. (2007); Velenis et al. (2008)] and
drifting are such examples. These controllers are often
without stability guarantees. However they do provide
new pathways to safety. In the event of an emergency, if
the current vehicle state x finds itself inside the minBRT
of undesired target set x ∈ A(t0), then conservative
controllers, if executed, will lead to unavoidable collision
as per Proposition 1. If the system regions on which the
beyond-the-limit controllers operate allow vehicle state to
escape out of the minBRT, then these controllers have
undeniable advantage over the conservative controller,
and should be selected to potentially avoid a previously
unavoidable collision. In practice however, such controllers
should also be further verified and validated to minimize
the additional risk they can generate.

5. SIMULATED VALIDATION

5.1 Simulation Environment

The simulation is implemented with MATLABTM SimulinkTM

using the Vehicle Dynamics BlocksetTM [MathWorks®

(2020)]. The HelperOC toolbox from [Bansal et al. (2017)]
is used for BR calculations. A vehicle modelled with 3
degrees of freedom (3DOF) body dynamics and combined
slip magic tire model [Gillespie (1992)] is used as the
“ground truth”. The vehicle parameters are listed in Table
I in [Zhao et al. (2021)].

5.2 Scenarios

Scenario 1 includes an ego vehicle (v = 15m/s) and a pop-
up obstacle in front of the ego vehicle at a fairly long
distance (D = 30m). The obstacle is detected when ego
vehicle reaches x = 0m. Scenario 2 includes the same setup
except that this time the pop-up obstacle comes much
closer to the ego vehicle when detected(D′ = 22m). To
avoid the obstacles, each scenario is associated with a pre-
planned path that avoids the collision, but the path may or
may not be suitable for the controllers. The freedom here

Fig. 5. (a) scenario 1: ego vehicle is able to use normal
driving to steer through a more forgiving pop-up ob-
stacle; (b) scenario 2: ego vehicle deploys beyond the
limit driving after an inside-BRT event is triggered.

is the choice to switch controllers at the desired moment,
and our proposed method will make exactly such decisions.
The predefined paths are made up of piece-wiseG1-smooth
straight lines and circular arcs.

5.3 Implementation

As a simplified model, the target set(obstacle) T is a
circle with a radius equal to lane width R = 3.7m.
Predefined paths are provided for controller to avoid the
obstacles. When it comes to BR check of collision with
obstacles, a simple constant speed Dubins car model
(Eq.(5)) is used with randomized disturbances of mag-

nitude [0.25m/s, 0.25m/s, 0rad/s]T on [ẋ, ẏ, ϕ̇]T to model
uncertainties.

The justification process constantly computes the minBRT
ATi

(t0) of ego vehicle using the justification model dynam-
ics (5) for each detected obstacle Ti at a frequency of 0.5
seconds. And an overestimated time-to-collision tf − t0 is
used to feed the minBRT calculation for assurance:

tf − t0 =
D

v
(12)

where D is the distance from vehicle CG to obstacle CG,
and v is the current vehicle speed. Under the constant
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speed assumption, this value of D/v is the time for ego
vehicle to not only reach the boundary of, but enough to
arrive at the center of the undesired target. Therefore it is
a proper overestimation of time-to-collision.

Two controller variants are considered: (1) a conserva-
tive baseline controller with optimal preview longitudi-
nal control [MacAdam (1981)] and Stanley lateral control
[Hoffmann et al. (2007)]; (2) a beyond-the-limit controller
(HOTDOG [Zhao et al. (2021)]) capable of both sustaining
drift and transitioning to and from conservative driving.

The HOTDOG controller already implements a controller
mode switching logic based on the product of speed v
and curvature κ to arbitrate between controller (1) and
(2) above, and that switching logic is seamlessly updated
with the minBRT-based controller justification algorithm:
the product vκ corresponds to the vehicle’s heading rate
ϕ̇. The maximum operation regions for controllers (1)

and (2) are |ϕ̇|drift,max = 0.26(rad/s) and |ϕ̇|drive,max =
0.20(rad/s).

The successful avoidance of an obstacle is marked by the
vehicle CG driving past the obstacle CG without getting
inside the obstacle area or vehicle destabilization (i.e.,
spin-out).

6. RESULTS

In scenario 1 (Fig.5(a)), while the ego vehicle is driving
forward with the default conservative controller, BR is
constantly checked with the initial justification model M1
(Dubins car model with |ϕ|max = 0.21rad/s). Since the
obstacle is far enough when it pops up, the ego vehicle
is not inside minBRT, thus just by tracking the pre-
planned trajectory with the conventional controller the
collision could be avoided. In scenario 2 (Fig.5(b)), since
the obstacle is much closer when it popped up, the ego
vehicle is immediately in the minBRT when it detects
the obstacle. As a result, the conservative controller is
determined to be unsafe for the scenario, and alternative
controllers need to be deployed. In this case, a beyond-
the-limit controller (HOTDOG in this case) is justified by
its verification model M2(Dubins car model with |ϕ|max =
0.26rad/s), since it can handle situation up to 0.26rad/s
according to Section 5.3, and it passes the BR check
with its verification model M2. In summary, the two
scenarios demonstrate the cases when the minBRT based
verification is either triggered or not triggered. And in the
triggered case, it is demonstrated how a beyond-the-limit
controller is justified to be deployed.

Because the planned path for the two scenarios is not
calculated by a specified planner model A that satisfies
Assumption 1, there is no guarantee (like the one in
Assertion 1) that either the conservative controller or
the beyond-the-limit controller can follow the planned
path stably. This imperfect situation, however, signifies
the importance of a verification model M that satisfies
Corollary 1. Such a model M can detect the vulnerability of
the existing controller following a specific path/trajectory.
Upon such detection, an alternative controller, if available,
can be tried with its associated new verification model M’
and can be deployed to handle the situation if it passes
the verification under M’.

7. CONCLUSIONS

In this work a method is proposed to address the justi-
fication of beyond-the-limit driving in emergency driving
scenarios. Suddenly detected obstacles may force the au-
tomated vehicle to take drastic limit-handling measures
to go back to safety. By checking the backward reacha-
bility (BR) of incoming collision objects and by controller
arbitration, the proposed justification method ensures the
beyond-the-limit controller is deployed in absolute urgency
to steer vehicle away from collision. The experimental
results demonstrate the ability to turn an unavoidable
collision of baselines into an avoidable event. This method
is not necessarily limited to collision avoidance, but can
also be applied to formally justify any hazard prevention
operation when conventional approaches fail, as long as
the system and operations of interest can be properly
modelled.
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Appendix A. PROOF OF MODEL
OVER-APPROXIMATION

In this appendix, we prove that the controller based model
B in (4) with |ϕ̇| ≤ 0.20[rad/s] is over-approximated by
the Dubin’s car model M in (5) with |ω| ≤ 0.21[rad/s],
assuming additionally that the velocity is constant v = v0.

Proof. The exact differential inclusion of model B at an
arbitrary state x = [x, y, ϕ]T at time t is:

FA(x, t) = {ẋ ∈ R3|ẋ = fA(x,u, t)}

=


ẋẏ
ϕ̇

 ∈ R3

∣∣∣∣∣∣
ẋẏ
ϕ̇

 =

v0 cosϕv0 sinϕ

ϕ̇

 ,∀|ϕ̇| ≤ 0.20


(A.1)

While the exact differential inclusion of model M at the
same arbitrary state x = [x, y, ϕ]T at time t is:

FB(x, t) = {ẋ ∈ R3|ẋ = fB(x,u, t)}

=


ẋẏ
ϕ̇

 ∈ R3

∣∣∣∣∣∣
ẋẏ
ϕ̇

 =

[
v0 cosϕ
v0 sinϕ

ω

]
,∀|ω| ≤ 0.21

 (A.2)

By comparing the expression of (A.1) and (A.2), it is
apparent that ∀ẋ ∈ FB(x, t), one can find the equivalence
in FM (x, t). Therefore,

FB(x, t) ⊂ FM (x, t) (A.3)

that is, the controller based model B is over-approximated
by the Dubin’s car model M.
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