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Abstract: Evaluation of the energy savings potential of Connected and Automated Vehicles
(CAVs) technologies necessitates a representative baseline that accounts for the inherent
variability due to route, terrain, traffic, traffic lights, etc., in real-world driving conditions. While
considerable work has been done in the field of optimal energy management, eco-driving and
eco-routing of CAVs, few contributions have addressed the creation of a representative baseline
to realistically evaluate the energy savings potential of these technologies. This work proposes a
route generation methodology based on leveraging a high-dimension driving dataset to construct
diverse subset of synthetic driving trips and synthetic routes for large scale evaluation of energy
consumption of CAVs. The generated synthetic routes can then be used to extract real-world
routes from open-source mapping platforms, which have similar characteristics as the generated
synthetic routes.

Keywords: Autonomous Vehicles, Simulation, General automobile/road-environment strategies.

1. INTRODUCTION

The current trends of vehicle electrification, ever increas-
ing road user safety targets, advances in on-board com-
putation hardware and algorithms, advances in vehicular
connectivity and a myriad of other features have led to
an increased proliferation of Connected and Automated
Vehicle (CAV) technologies with a huge bias on electrified
vehicles; with this trend expected to progressively increase
as studied by Dingyi et al. (2018). Current state-of-the art
methods in the evaluation of vehicle fuel economy rely on
running standardized tests over regulatory drive cycles.
However, to exhaustively evaluate the energy benefits of
CAVs this cannot be performed over regulatory drive cy-
cles since the vehicle velocity is an output of the CAV
based on the driving scenario, route, traffic conditions. As
such, establishing a representative baseline for evaluating
the benefits of CAVs technologies is critical as has been
studied in Rajakumar Deshpande et al. (2020) via Monte
Carlo Simulation and then transitioned to representative
track testing in Rajakumar Deshpande et al. (2021). How-
ever, these all assumed that the subset of routes over
which these technologies were evaluated could represent
real-world driving conditions.

Significant efforts have been dedicated towards generation
of synthetic drive cycles for evaluating the energy con-
sumption of vehicles beyond the standard regulatory drive
cycles provided by US EPA (2020). Dembski et al. (2002)
proposed a procedure to generate synthetic drive cycles
manipulating the regulatory missions. In the work of Gong
⋆ This work is supported by the United States Department of En-
ergy, Advanced Research Projects Agency – Energy (award number
DE-AR0000794).

et al. (2010), the authors used a Markov Chain approach
to create representative drive cycles for energy evaluation
of Plug-in Hybrid Electric Vehicle (PHEV) fleets. Ericsson
(2000) formulated a comparison of driving pattern metrics
based on driver type, street environment factors and traffic
condition factors to capture the variability inherent in
urban driving patterns. This can be used to model realistic
driving behavior in the development of traffic management
systems but does not inherently model the variability that
a CAV may encounter with access to route and traffic
information. Ericsson (2001) studied 62 driving pattern
parameters that were used to empirically quantify the
effect of these driving pattern parameters on energy use
and emissions. A subset of these parameters are chosen for
the proposed work. However to the authors’ knowledge,
the procedures found in the literature do not accurately
assess whether or not the generated drive missions would
represent real-world driving conditions.

The aim of the present work is to provide a novel route
generation process utilizing a driving data pool to produce
representative missions for the evaluation of potential
energy savings of CAVs. The data pool was collected
during previous works of the authors and comprises both
real-world and virtually simulated data. The vast set of
route information is statistically analyzed to determine
key metrics to later generate synthetic routes. Moreover,
a constrained multi-objective eco-driving optimal control
problem is formulated to quantify the energy consumption
and compare it with the results obtained by virtually
simulating a baseline driver. A large scale simulation
is performed to evaluate a statistical representation of
the potential energy savings over various route scenarios.
Finally, the synthetic routes that match the dominant
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energy consumption values per route classification can be
used in the route extraction involving real-world trips with
similar features.

The work is divided as follows: firstly, the baseline sim-
ulator is introduced along with the main equations used
to model it; then, the route generation methodology is
rigorously described; finally, an example of the potential
energy savings that could stem from CAVs is given along
with conclusions and possible future works.

2. SIMULATOR - ENHANCED DRIVER MODEL

To model and analyze the energy consumption of the ve-
hicle while accounting for variability due to driving styles
and routes, an implementation of the Intelligent Driver
Model (IDM) by Kesting et al. (2010) is adopted. To
incorporate traffic and stop signs, an extension is made to
formulate the Enhanced Driver Model (EDM) by Gupta
et al. (2019), and is leveraged for driver behavior modeling
in this work. The EDM simulates human driver behavior
and predicts the longitudinal speed profile of the vehicle.
This deterministic velocity predictor has been tuned with
real-world data where the calibration parameter set is as
defined in Equation 1, in which amax is the maximum
vehicle acceleration, bmax is the maximum vehicle decel-
eration, δ is the acceleration / deceleration exponent, θ0
is the offset from the speed limit, and c1 is correlated to
braking distance.

Ψdriver ≜ {amax, bmax, δ, c1, θ0} (1)

The EDM operating modes which include Freeway Driving
(FD), Car Following (CF) and approach to a stop location
are defined by the following equations:
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where sl, se, ssafe, sbrake denote lead vehicle position, ego-
vehicle position, safe gap and safe braking distance respec-
tively. ve, vl, vlim represent the ego-vehicle velocity, lead
vehicle velocity and speed limit respectively. Additionally,
Rajakumar Deshpande et al. (2020) enhanced the EDM
to include a Line of Sight (LoS) formulation to account
for driver response when approaching a signalized inter-
section.

There are multitude of factors that contribute to the
energy consumption of the vehicle, namely:

(1) Vehicle characteristics e.g., vehicle dimensions, pay-
load, auxiliary loads, etc.

(2) Route characteristics, Ξroute e.g., vmax
lim , vmin

lim , grade
α, number of stop signs nss, number of traffic lights
ntl, location of stop signs sss, traffic light location stl,
etc.

(3) Driving style, Ψdriver

(4) Signal Phase and Timing (SPaT), ΦSPaT = f(Ξroute):
including the traffic light sequence for each light along
the route. For this work, the traffic lights are assumed
to run a fixed time interval traffic light sequence as
opposed to an event-driven traffic light sequence.

(5) Traffic: which is embedded in vl
(6) Other external conditions e.g. weather, road condi-

tions, etc.

For this work, the variability in driving conditions is
introduced by varying the route characteristics Ξroute,
driving style Ψdriver and the SPaT ΦSPaT . The EDM
generates a vast driving dataset that is used in the route
generation process outlined. A large scale simulation over
the test matrix of routes, driving style and SPaT results
in a dataset X with select features d based on statistical
metrics defined in the next section and numerous samples
n with:

X ∈ Rn×d, 0 < d < ∞, n ≫ d (5)

3. ROUTE GENERATION METHODOLOGY

The initial route data used for generating the driving
data pool has been sampled from around the Columbus,
OH region with varying route characteristics. To aid in
evaluating the energy and mobility benefits of predictive
technologies that leverage look-ahead information (e.g.
route data, traffic and traffic light information), large-scale
Monte Carlo simulations were performed over a subset
of these routes. In these simulations, multiple scenarios
of the driver aggressiveness and SPaT were varied to
determine the statistical variation of fuel consumption and
travel time. Although the methodology was sufficient for
showcasing the energy savings benefits for a mild HEV
vehicle, the criteria for route selection may differ when
considering vehicles with larger electrification, such as
PHEVs and Battery Electric Vehicles (BEVs). In these
cases, further insights into the methodology are required
when generating feasible test scenarios mainly due to the
larger battery size which implies longer all-electric ranges.

To this aim, the authors have formulated a procedure to
systematically generate routes for an exhaustive evaluation
of the energy benefits of CAVs (see Figure 1). It is divided
into four broad processes: (1) Driving data generation, (2)
Machine Learning (ML)-based synthetic route generation,
(3) Route energy analysis and (4) Real-world route extrac-
tion.

In the Driving data generation process, a random route
selector extracts trip characteristics (i.e. speed limits:
vlim, stop sign locations: sss, traffic light locations: stl,
SPaT: ϕSPaT , etc.) that are fed together with driver
parameters Ψedm into the EDM to populate the large
driving data pool. This set can also be augmented with
real-world driving data collected using Global Positioning
System (GPS) or the On-Board Diagnostics (OBD) port
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Fig. 1. Overall Route Generation Process

data. In the ML-based synthetic route generation process,
user defined route metrics fi including trip classifications
and desired route lengths are fed along with the large-
scale driving data obtained in the previous process into
a Feature Extraction and Clustering (FEC) subsystem.
The FEC generates synthetic routes that correspond to
the user-defined route metrics. In the Energy Analysis
process, an Energy-based Route Sensitivity (ERS) analysis
is performed on the generated synthetic routes Nξ by
comparing the energy requests output from the EDM Eξ0

and the DP Eξ1 . All the synthetic routes N̂ξ ∈ Nξ for
which the energy request variations are higher than within
a defined bound are fed to the final process. In the Route
extraction process, a Similarity Index Γ is computed as
a function of route parameters and can be used as a
quantifiable pass/fail metric for extracting routes from
Open Street Map (OSM), or any other available mapping
API that closely match the similarity index. Routes from
OSM whose similarity index Γ̃ ≈ Γ can then be extracted
as viable routes to exhaustively evaluate energy efficiency
benefits for CAVs.

3.1 Route Selector

A subset of 5 routes sampled from the Columbus, OH re-
gion were used as the basis for the route selector subsystem
since the route data for each route was readily available.
The corresponding SPaT profiles, extracted using SUMO,
generated with the departure time as a random variable
were used in the generation of large-scale driving data.
Three driver aggressiveness parameter sets Ψdriver (i.e.
“aggressive”, “normal” and “relaxed”) were chosen and
calibrated for each route and used to increase variability
in the generation of the driving dataset. A Design-of-
Experiment (DOE) has been setup where the large-scale
driving dataset was generated using the EDM by varying
{Ψdriver, ϕ

k, SPaT k}. The generated results were then
stored into a driving data pool that was composed also of
real-world data collected through vehicle instrumentation
e.g., via GPS or OBD-II odometry information.

3.2 Driving Sequence Analysis

To extract statistical metrics from the driving data, kine-
matic sequences are extracted from each trip in the driving
data pool. A kinematic sequence, κ as formulated by
Dembski et al. (2002) and for the context of this paper
is defined as the vehicle velocity trajectory between con-
secutive stops (instances where vehicle is at zero speed).
These stops correspond to either stopping at a stop sign
or a traffic light, which correlates to idle times for a
conventional powertrain. These stop times are appended
to the end of each kinematic sequence. For each kinematic
sequence, a set of statistical metrics ∈ Rd as defined
in Table 1 is extracted from the driving data pool to
form the feature set. The choice of metrics was motivated
from related literature by Ericsson (2000) and Dembski
et al. (2002) that characterize driving behavior in urban
driving scenarios. Additionally, metrics that are correlated
to energy usage while remaining powertrain agnostic are
considered.

Table 1. Kinematic sequence statistical metrics

Parameter Description µ σ

tκi Sequence duration, s 81 42

sκi Sequence distance, m 939 778

tstopκi
Stop time, s 14.4 12.7

tcruiseκi
Cruise time, s 24.8 27.6

vmax
κi

Max. sequence velocity, m/s 18.5 4.1

vκi Mean sequence velocity, m/s 10.4 4.4

σvκi
SD sequence velocity, m/s 6.3 1.5

amax
κi

Max. sequence acceleration, m/s2 2.4 0.33

bmax
κi

Max. sequence deceleration, m/s2 -2.1 0.12

aκi Mean sequence acceleration, m/s2 0.8 0.53

bκi Mean sequence deceleration, m/s2 -1.04 0.18

σaκi
SD sequence acceleration, m/s2 0.65 0.18

σbκi
SD sequence deceleration, m/s2 0.313 0.19

taκi
Sequence acceleration time, s 21 14.7

tbκi
Sequence deceleration time, s 20.7 10.85

vlimκi
Mean speed limit, m/s - -

∆max,lim,+
vκi

Max. speed limit increase, m/s - -

∆min,lim,−
vκi

Min. speed limit increase, m/s - -
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Trip Classification A driving trip refers to a complete
set of kinematic sequences up to the destination. Trips
are classified into three (3) broad categories derived from
the sections of the WLTP drive cycle. The classification is
based on the average trip velocity, vtrip inmph as shown in
Equation 6 which captures variability due to speed limits
and route markers.

Ytrip =


1 =⇒ urban vtrip < 20

2 =⇒ mixed 20 ≤ vtrip ≤ 30

3 =⇒ highway vtrip > 30

(6)

Statistical Analysis of Driving Sequences For each trip,
with variation in Ξroute,Ψdriver,ΦSPaT , the kinematic
sequence metrics described in Table 1 are extracted and
appended to a matrix X ∈ Rn×d. This results in a high
dimension dataset with varying mean and variance for
the various metrics. It is not immediately obvious which
statistical metrics are dominant as well as the correlation
between them.

To reduce the dimension of the dataset, Principal Com-
ponent Analysis (PCA) introduced by Pearson (1901) is
applied. From this, it is learnt that the 99% of the ratio of
explained variance in the kinematic sequences is captured
by 3 principal components, with the dominant statistical
metrics being tκ, t

cruise
κ , taκ

, tbκ , vκ.

Clustering of Driving Sequences An agglomerative hi-
erarchical clustering approach is used to cluster the data
recreated via PCA into groups. An agglomerative cluster-
ing approach was adopted to aid in making a correlation
between the generated clusters and the trip classification
of each kinematic sequence. By analyzing the dendrogram
for different numbers of cluster looking, the data is clus-
tered into three distinct groups that can be correlated
to the original trip classification via a probability matrix
as shown in Table 2. Figure 2 shows the three clusters
visualized with three of the dominant statistical metrics:
taκ

, tκ, tbκ , confirming the process accuracy.

Fig. 2. Visualization of clusters generated from data for
dominant metrics taκ

, tκ, tbκ .

3.3 Synthetic Route Generator

After computing the probability matrix, the process for
developing a robust synthetic route generator has been

Table 2. Probability of occurence of clusters in
trip classification

Cluster 1 Cluster 2 Cluster 3

Y = 1 (urban) 0 0.2383 0.7617

Y = 2 (mixed) 0.0972 0.516 0.3868

Y = 3 (highway) 0.2906 0.5554 0.154

studied. The objective is to create new routes exploiting
the large pool of data collected and then clustered. In
general, the synthetic route generator is an iterative pro-
cess where given different user requirements, the tool can
output a large batch of missions complying with them.
The flowchart describing the procedure adopted in the
synthetic route generation is illustrated in Fig. 3. The
first step is to choose the trip length and classification
(i.e. urban, mixed or highway) that can be considered the
minimum inputs to provide. The process starts by dividing
the range [0, 1] into n-parts (where n is the number of
clusters detected, i.e. three) each with a length depending
on the results of the probability matrix. Then, a random
number nrdm from a uniform distribution is generated
and its value informs which cluster to pick the kinematic
sequence κ from (based on the probability ranges PC1,
PC2, and PC3). If the criteria are met, the kinematic
sequence κi is appended to the synthetic route Nξ and the
whole process is re-iterated until the desired trip length
(± 2% tolerance) is met. Once the number of synthetic
routes generated is sufficient enough, further checks can
be performed to output missions that precisely resemble
the initial requirements. This additional step is required
to avoid routes that have repetitive κi or where the mean
speed does not comply with the driving scenario require-
ments.

Generate random number

���� ∈

Randomly pick �
� ∈ �

Randomly pick �
� ∈ �

Randomly pick �
� ∈ �

Append � to �	

Store �	

���� ∈ ℙ� ?
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Is the length 
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Y

Y

Y

N

N

Y

N
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on synthetic route 

(i.e. scenario, length, etc..) 

Fig. 3. Flowchart of the synthetic route generation proce-
dure

3.4 Synthetic Route Energy Analysis

The objective of this study is to quantify the potential en-
ergy savings of CAVs over the generated synthetic routes.
To this aim, the power requested at the wheels has been
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assessed using the EDM by performing a full-factorial
simulation over the aggressiveness parameter set Ψedm to
exhaustively explore the trade-off of energy consumption
and travel time. Then, the EDM power request output,
resulting net energy, and travel time over the synthetic
routes has been compared to the results obtained using
a globally optimal controller algorithm, Dynamic Pro-
gramming (DP) first studied by Bellman and Lee (1984).
This algorithm has been implemented in Matlab and the
DynaProg toolbox provided by Miretti et al. (2021) has
been used, due to the relatively fast computation com-
pared to other DP solvers in the literature. In general, a
DP-based algorithm provides the solution to an Optimal
Control Problem (OCP) by running a backward simulation
and computing at each step the cost function for every
discretized control value at each discretized state value.
Then, the optimal trajectory is found in the forward sim-
ulation, i.e. the trajectory associated with the minimum
cost capable of simultaneously complying with the set
constraints. The vehicle dynamics equations used in the
OCP formulation are detailed in Equation 7.

ωwheel(t) = v(t) · rwheel

Froad(t) =
(
A+B · v(t) + C · v2(t)

)
Twheel(t) = (Froad(t) +mveh · a(t)) · rwheel

v(t+ 1) = v(t) + a(t) ·∆t

(7)

Where ωwheel is the rotational speed of the wheels; v and
rwheel are the velocity of the vehicle and the tire radius,
respectively; A, B, and C are the road load coefficients
used to compute the resistive road force Froad; Twheel is the
resistive torque at the wheels; mveh and a are the vehicle
mass and its acceleration; lastly, ∆t is the timestep. The
parameters in Equation 7 have been discretized via Euler
forward method and then reformulated to express them
in distance domain due to the nature of the exogenous
inputs (i.e. speed limits and stop locations are expressed
as a function of the distance). Moreover as seen from
the vehicle dynamics equations, the only vehicle data
needed are mass, tire radius and road load coefficients
that have been extracted from US EPA (2022), making the
implementation powertrain agnostic. The vehicle selected
for this analysis is a 2021 Chrysler Pacifica Hybrid PHEV.

The control and state vectors along with the cost function
for the OCP formulation are detailed in Equation 8. The
optimal trajectory achieves the minimization of a trade-off
between energy at the wheels and travel time according to
Equation 9:

u = [as] ∈ R, x =

[
vs

as−1

]
∈ R2

Js(xs) =

N−1∑
i=1

(
γ
Pi,wheels

Pnorm
+ (1− γ)

)
∆ti + µjerk

∣∣∆ai
∣∣
(8)

min
u

Js(xs)

subject to xi+1 = xi + f(x, u) ·∆t

vmin(si) ≤ vs(si) ≤ vmax(si)

amin ≤ as(si) ≤ amax

vs(si = sstop) = 0

(9)

The stage cost Js is made of two terms mainly, the ratio
between the instantaneous power requested at the wheels
and a normalization factor Pnorm, and the timestep. Even
though the focus of this study is on the energy analysis, the
second term has been crucial to avoid any trivial solution
(e.g. null speed at all steps). Furthermore, the acceleration
variation in the stage ∆ai has been included in the running
cost to penalize rapid changes in the acceleration. Two
(2) different weights have been formulated, namely γ and
µjerk. γ ∈ [0, 1] is used to study trade-off between energy
minimization and travel time; µjerk is a fixed weight
to balance the derivative of the acceleration. Physical
constraints on acceleration and velocity have been set
on lower and upper boundaries based on the analysis
of regulatory drive cycles and route speed limits. The
acceleration lies in the range [−2, 2]m/s2, whereas the
velocity is bounded to have values greater than or equal
to zero but lower than the speed limits. To ensure that the
vehicle comes to a stop at the desired stop locations, a null
velocity has been imposed in the speed limit constraints
at every stop.

4. ENERGY ANALYSIS RESULTS

In this section, the energy comparison between the baseline
EDM and the DP-based optimal controller is found. To
provide an exhaustive analysis, five different synthetic
routes have been generated using the methodology de-
scribed above for a mixed driving scenario. For each route,
a multitude of EDM parameters Ψdriver and DP weights γ
have been tested to ensure the robustness of the proposed
procedure. In Fig. 4 the velocity and power demanded at
the wheels graphs are illustrated for a 15 km synthetic
route in mixed scenario. In the upper sub-plot, the red
line corresponds to the vehicle velocity determined by the
DP-based algorithm while the blue indicates the velocity
profile prescribed by EDM, while the grey line indicate the
speed limits with the stops corresponding to the points
where vs = 0. As can be seen by simultaneously analyzing
speed and power, the DP controlled vehicle resulted in a
lower energy request throughout the route. This mainly
stems from less aggressive accelerations and decelerations
along with avoiding abrupt accelerations for short peri-
ods of time. In the first part of the trip, the DP-based

0 5000 10000 15000
0

5

10

15

20

25

V
el

o
ci

ty
, 

m
/s

0 5000 10000 15000

Distance, m

-100

0

100

P
o

w
er

, 
k

W

Speed limits

DP

Baseline
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controller does not accelerate up to the new speed limit
avoiding an increase in power request. In this synthetic
route illustrated, the baseline EDM net energy is equal to
4.26 MJ whereas the DP resulted in 3.43 MJ with a vari-
ation in net energy demand of 24.2% with respect to the
baseline. With regards to the travel time, the EDM takes
884 s to run the 15 km whereas the DP-based controller
spends 984 s resulting in an increase of approximately 11%.

To provide a broader and more complete analysis, the
probability density function (PDF) for both EDM and DP-
based controller has been computed for the net energy
request and travel time in 5 synthetic routes generated.
The PDF can be used to statistically provide the likelihood
of a certain variable to be in a range of values, and Fig.
5 shows both the raw frequency distribution (FD shown
as histograms) and the PDF for net energy and travel
time in a mixed scenario. As evident from this figure,
it is more likely to obtain substantially lower values of
net energy in the DP-based controller than the baseline,
whose mean is 4.51 MJ with respect to 3.93 MJ obtained
by the optimal strategy (i.e. a variation of approximately
14.8%). Concerning the travel time, it is clear that the
DP more likely results in higher values with an average of
970 s compared to 914 s obtained by the baseline EDM
(roughly 6% difference). This statistics tool appropriately
depicts the differences between the EDM and the DP
controllers to prove the remarkable improvements arising
from an optimal strategy, which in turn could be seen as
the improvements due to the implementation of Connected
and Automated technologies. For the purpose of this study,
the synthetic routes showing a net energy variation that
corresponds to the dominant modes from the PDF will be
considered for the route extraction process.

5. CONCLUSION AND FUTURE WORK

The evaluation of potential energy savings stemming from
the implementation of connected and automated driv-

ing cannot be exhaustively performed using conventional
driving cycles. The proposed study provides a procedure
for the creation of synthetic routes starting from real-
world and virtually simulated driving data. This data is
converted into kinematic sequences and then clustered
accordingly through a feature extraction and analysis tool.
Then, a batch of synthetic routes is generated and the
power request at the wheels is assessed using the Enhanced
Driver Model and a Dynamic Programming based algo-
rithm. The synthetic routes in which the dominant energy
consumption are found are considered feasible candidates
for the Open Street Map route extraction and to later
assess the potential benefits of Connected and Automated
Vehicles. Significant variations in net energy request have
been demonstrated in the example shown, for five (5)
generated synthetic routes of 15 km long depicting a mixed
driving scenario. The probability density functions ob-
tained by the raw frequency distributions clearly illustrate
a lower net energy request when the DP-based controller
drives the vehicle, with a difference in mean values of
approximately 14.8%. The EDM is more likely to show
lower travel times, with a reduction of roughly 6% with
respect to the DP strategy.

Work on the route extraction procedure to find real-
world routes that resembles the synthetic routes is already
underway. This involves using an open-source mapping
resource, namely OpenStreetMaps (OSM) to extract these
real-world routes by performing a similarity scoring be-
tween the synthetic route and the real-world routes.
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