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Abstract: DC fast charging is a critical step to support the recharging demands of electric
vehicles and increase their penetration in the market. However, compared to normal Level 1
or 2 charging, DC fast charging imposes additional battery capacity fade which can result in
premature aging of the battery, reducing its useful life. This paper proposes a computationally
efficient, meta-heuristic approach to optimize the charging C-Rate profile while considering
battery degradation associated with not only the charging but also the expected drive cycle
following charging. The battery and its degradation are modeled with a semi-empirical, physics-
based approach which yields a high accuracy and is computationally efficient. The meta-heuristic
approach to optimize the charge profile is first validated for a simplified case with Dynamic
Programming. To demonstrate the effectiveness of the approach in attenuating the battery aging,
a benchmark case with 15 minutes of constant current charging of a Lithium Iron Phosphate
battery is set. A nearly 1% capacity fade improvement is obtained for a single charge-discharge
cycle after charging C-Rate optimization, which would generate significant benefit over the
electric vehicle life.

Keywords: Charging and refueling infrastructure; Battery management systems; Modeling and
control for electric and electro-magnetic components;

1. INTRODUCTION

In 2019, the transportation sector was responsible for more
than 29% of all greenhouse gas emissions in the United
States, having surpassed the electric power generation
sector in 2017 (Environmental Protection Agency (EPA)
(2021)). Newly developed electric vehicles (EVs) have
been assessed to lower life-cycle emissions by 57% to
68% for comparable internal combustion engines (ICEs)
(Bieker (2021)). However, the median driving range of
an ICE vehicle in 2021 was 403 miles while that of an
EV was only 234 miles (Department of Energy (DOE)
(2022)). In addition to the range anxiety experienced by
EV adopters, the wait time to recharge the battery is also
much longer than that required to refuel a conventional
vehicle, resulting in reduced travel flexibility for the user.

For increased penetration in the transportation sector,
EVs must provide both economical and practical benefits
to customers when compared with ICE vehicles. With re-
spect to charging time, the state-of-the-art Direct Current
Fast Charging (DCFC) units can provide more than 200
miles of range in 30 minutes but input significantly high
power to the battery, between 25 to 350kW (Putzig et al.
(2021)). The associated charge current is large and results
in higher battery temperatures, which has a great impact
on battery life (Drake et al. (2015); Tomaszewska et al.
(2019)). In a study conducted by the US National Re-
newable Energy Laboratory, a 15◦C reduction in average
battery temperature over the life-time of the battery was
found to result in roughly a double useful battery life
(Keyser et al. (2017)). Additionally, insufficient battery
thermal management could result in thermal runaway if

the temperature reaches a critical point, posing a hazard
to the user (Patel et al. (2020)). Due to the unavoidably
high C-rates required for DCFC and the associated high
temperatures, an effective battery thermal management
system is thus essential for the safe fast charging at various
operating conditions.

While active cooling strategies have already been proposed
to mitigate degradation due to heat (Xia et al. (2017)),
a preemptive approach is to implement charging strate-
gies that maintain the temperature within desired bounds
during fast-charging. In this case, the battery temperature
control is more active compared to the application of cool-
ing strategies. In terms of modeling, an equivalent circuit
model describing the battery’s electrochemical behavior
is usually combined with a thermal model that captures
the heat generation and dissipation. An optimal control
framework is then built to minimize a cost function re-
lated to the battery degradation (Zhang et al. (2017)). By
integrating a battery aging model, it is possible to obtain
a degradation aware charging profile that minimizes the
degradation due to DC fast charging (Guo et al. (2015)).

However, the challenge is that, the resulting optimal con-
trol problem (OCP) formulation with an objective of
achieving fast-charging while minimizing capacity fade is
highly nonlinear due to the electro-thermal-aging coupling
(Hu et al. (2015)). Many algorithms have been proposed
to find solutions, with varying successes regarding to real-
time implementability. For example, in Xu et al. (2019),
Dynamic Programming (DP) resulted in a 4.6% reduction
in capacity fade due to solid electrolyte interface growth
over 3300 charge discharge cycles (only considering ca-
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pacity fade due to charging), when compared with the
constant-current (CC) charging protocol. However, consid-
ering the number of states involved and the curse of dimen-
sionality associated with DP, the computational expense
is high. Moreover, their approach minimized temperature
rise and capacity fade separately, yielding the possibility of
two different charge profiles that minimize respective cost
functions. The OCP can also be solved using Pontryagin’s
Minimum Principle as described in Tang et al. (2016),
where a simplified aging model is used to define a severity
factor that compares the expected aging with that from a
nominal current profile. This is thus dependent on the se-
lection criteria of the nominal current profile, which varies
significantly from user-to-user. Machine Learning methods
have been recently investigated to minimize the capacity
loss during fast charging Attia et al. (2020). While results
are promising, the approach requires extensive laboratory
testings to failure of batteries to ensure reliable predictions
of on-board cycle-life estimation.

More computationally efficient methods have been investi-
gated such as particle swarm optimization in Salyer et al.
(2021b). Results from this multi-objective study showed
fast convergence of the algorithm to a near globally-
optimal solution to minimize capacity fade and charge time
to achieve a desired Ahr throughput. However, this study
and all other previously mentioned literature neglect the
effect of driving the vehicle immediately after charging.
This is a strong assumption since DCFC units are more
likely to be utilized on long-distance drives, indicating a
greater likelihood of immediate driving after the charge
event (Zhang et al. (2015)). Additionally, since the battery
degradation is a strong function of pack temperature, and
DCFC causes higher battery temperatures, the expected
driving behavior post-charging under a higher temperature
cannot be neglected.

In this paper, the DCFC current profile is optimized
considering expected future driving within the OCP, to
account for the higher temperatures at the end of charging.
To the best of the authors’ knowledge, this is the first
paper reporting an optimization strategy that accounts
for battery load due to future vehicle use immediately
after the charge event. The solution is firstly obtained
through DP to benchmark the results obtained from a real-
time capable meta-heuristic optimization algorithm. Thus,
the results provide an insight into the effect of battery
temperature on the overall degradation during a charging
event by considering both the charge and subsequent
discharge processes. When the expected driving is not
considered in the OCP formulation, the results show a
higher temperature at the end of charging with greater
capacity fade at the end of the discharge cycle, indicating
the importance of this consideration.

2. THERMALLY COUPLED,
MIXED-DEGRADATION MODEL

The battery model consists of three main components,
namely a 0th order equivalent circuit model, a lumped
thermal mass model for the temperature dynamics and a
simplified degradation model for battery aging. The three
components are integrated as shown in Fig. 1.

Fig. 1. Coupled Battery System Block Diagram

2.1 Equivalent Circuit Model

A 0th order equivalent circuit model was utilized to model
the dynamics of the battery’s state of charge (SOC):

Voc(SOC) = Vt +Ro(c/d)(SOC) · I (1)

dSOC

dt
=

I

C · 3600
(2)

where Voc is the open circuit voltage, Vt is the terminal
voltage, and C is the nominal capacity of the battery in
Ahr. The internal resistance and open circuit voltage in
Eq. (1) are functions of the SOC and the parameters are
taken from Lam et al. (2011).

2.2 Lumped Thermal Model

A simple lumped thermal mass model is developed to
describe the battery temperature dynamics considering
the effect of the battery current:

dTbatt

dt
=

1

mc
(I2Ro(c/d) − hA(Tbatt − Tamb)) (3)

where m is the mass of the battery pack, c is the thermal
capacity, Ro is the internal resistance for charge (c) and
discharge (d), h is the heat convection coefficient, A is the
surface area, and T amb is the ambient temperature. The
values of the parameters are summarized in Tab. 1.

Table 1. Parameters for Thermal Model

Parameter Value Unit

m 0.07 kg

c 1100 J/kg ·K
h 5 W/m2 ·K
A 6.36E(−3) m2

2.3 Mixed-Degradation Model

This module describes the two primary degradation mech-
anisms, capacity loss due to loss of active material (LAM)
and capacity loss due to solid electrolyte interface (SEI)
layer growth (Jin et al. (2017); Salyer et al. (2021a)):
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QSEI =

∫ t

0

kSEI · e
−

ESEI

RTbatt

2(1 + λθ)
√
t

dt (4)

QLAM =

∫ t

0

kLAM · e
−
ELAM

RTbatt · SOC · |I|dt (5)

Qtotal = QSEI +QLAM (6)

where kSEI , ESEI , kLAM , ELAM , λ are calibrated param-
eters, and θ is the SEI layer side reaction over-potential,
which is obtained by coupling an electrochemical model
(Jin et al. (2017); Salyer et al. (2021a)). To reduce the com-
putation time and model complexity for the optimization
study, this paper adopts a mixed degradation model from
(Miller et al. (2022)), which is based on the calibration of
a lumped parameter χ as the product of λ and θ, Eq. (7):

χ(SOC, Tbatt) = λ · θ(SOC, Tbatt) (7)

To validate the implemented degradation model, battery
capacity fade data for an EV with a ‘complex duty cycle’
was obtained from Safari and Delacourt (2011) for a 2.3 Ah
LFP battery from A123 Systems (26650). The battery was
charged up to 100%, held for a rest period, and discharged
using this duty cycle. The cycle was repeated to yield a
one-year capacity fade profile. The imposed current profile,
together with a comparison between model results and
original data are shown in Fig. 2, which shows a good
validation of the degradation model. With modeling for
one year, the capacity fade is 6.58% and the data shows a
7.57% fade.
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Fig. 2. One year mixed-degradation model validation from
Safari and Delacourt (2011)

3. OPTIMIZATION OF CHARGING PROFILE

3.1 Optimization Problem Formulation

This paper aims to optimize a charging profile u(t) defined
in C-rate, such that the capacity fade of the battery is
minimized over both a charge and subsequent discharge
cycle, subject to state and input constraints:

minJ
u

(x, u, w) =

∫ tf

0

Qtotal(x, u, w)dt

s.t. ẋ = f(x, u)

xmin ≤ x(t) ≤ xmax

0 ≤ u(t) ≤ umax

w(t) = 0 ∀ 0 < t ≤ tch
u(t) = 0 ∀ tch < t ≤ tf

(8)

where x is the state vector x = [SOC Tbatt QSEI QLAM ]
T
;

f(x, u) defines the state dynamics; and w(t) is the external
input vector which defines the discharge current while
driving. The total time, tf , is a fixed time that includes
both charging, tch, and driving time, tf−tch. The charging
time is also fixed in this problem. With this definition
of control input and external input, the state of charge
equation in Eq. (2) becomes:

dSOC

dt
=

(u(t) + w(t))

3600
(9)

The constraints on state variables are based on A123
Systems, High Power Lithium Ion ANR26650:

SOC0 ≤ SOC(t) ≤ SOCf

Tbatt,min ≤ Tbatt(t) ≤ Tbatt,max
(10)

Moreover, at the end of the charging event at time tch,
the battery must be at the required SOC:

SOC(tch) = SOCf (11)

Finally, an algebraic constraint is introduced on the
terminal voltage Vt(t) based on the battery specifications:

Vt,min ≤ Vt(t) ≤ Vt,max (12)

Due to the nonlinearities in the optimization problem
above, a possible solution approach is based on Dynamic
Programming (Bertsekas (2012)). However, due to the size
of the state vector, DP is computationally prohibitive for
online implementation Xu et al. (2019). Moreover, splitting
the battery current into a controllable profile u(t) and
an external input w(t) makes the DP challenging to im-
plement without further increasing the number of states.
For this reason, a meta-heuristic optimization technique,
particle swarm optimization (PSO), is implemented to find
a near optimal solution with reduced computation time
(Eberhart and Kennedy (1995)).

3.2 PSO Implementation

Particle swarm optimization is a population-based meta-
heuristic algorithm where the position of each particle
in the swarm is a potential solution to the optimization
problem. The population or swarm of particles is initialized
with positions randomly assigned throughout the feasible
search space and the cost associated with the position of
each particle is computed. Assuming a minimization objec-
tive, the cost associated with the position of each particle
is saved as the ’personal best’ solution for that particle
while for the entire swarm, the solution with the minimum
cost is saved as the ’global best’ solution. The position
and associated cost of each particle is updated at every
iteration, based on a velocity equation that is a function
of the personal and global best solution. The exploration
through the search space continues for a defined maximum
number of iterations, or until convergence.
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For 2m time-steps required for DCFC, the C-rate u(t) is
optimized over a 2m dimensional search space. To ensure
that the battery is charged up to the defined SOCf , ūcc

which is the constant C-rate required to charge up is
first calculated. Then sequentially, the constant C-rate is
repeatedly discretized temporally into two, while main-
taining the average current to be ūcc over the available
time.

At the first discretization step, two C-rates up(1) and up(2)
must be obtained that have a mean current of ūcc. This is
as defined by Eq. (13) where SOC0 is the initial SOC, in
decimals and tCh is the available charging time in hours.

ūcc =
SOCf − SOC0

tCh
=

up(1) + up(2)

2
(13)

This constraint is implemented within a 1D PSO explo-
ration of the first discretization, by defining the particle
position xp as the deviation from ūcc, yielding C-rates
up(1) and up(2) as obtained in Eq. (14, 15). These C-rates
contribute to the Qtotal which is the integrand of the cost
function used in the PSO.

up(1) = ūcc + xp and up(2) = ūcc − xp (14)

−ūcc ≤ xp ≤ umax − ūcc (15)

The update equations of the PSO are defined by Eq. (16-
17) where tunable parameters of the algorithm are the
inertial weight b and acceleration coefficients c1 and c2.
Random numbers r1, r2 ∈ [0, 1] perform the stochastic
aspect of the exploration, k is the iteration number, p is
the particle identity and α is the relaxation factor.

vk+1
p = bvkp + c1r1(pbestp − xk

p) + c2r2(gbestp − xk
p) (16)

xk+1
p = xk

p + αxk+1
p (17)

After the exploration of the search space at the first
discretization step, the optimal deviation x∗ is found by
the 1D PSO and the resulting charge profile is composed
of u1D

∗ (1) and u1D
∗ (2) as illustrated in Fig. 3.
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Fig. 3. 1-D PSO Optimal Solution

To discretize further and obtain a 4 time-step C-rate
profile that maintains ūcc as the overall average current,
the first two time-steps and last two time-steps must
average u1D

∗ (1) and u1D
∗ (2) respectively. This is achieved

by a 2D PSO where the particle position is associated with
xp(1) and xp(2) which are the respective deviations from
u1D
∗ (1) and u1D

∗ (2) as described by Eq. (18-21). Once the
PSO finds the optimal position denoted by x∗, the 4 step
current profile is given by u∗4D as illustrated in Fig. 4

up(1) = u1D
∗ (1) + xp(1) and up(2) = u1D

∗ (1)− xp(1) (18)

up(3) = u1D
∗ (2) + xp(2) and up(4) = u1D

∗ (2)− xp(2) (19)

−u1D
∗ (1) ≤ xp(1) ≤ umax − u1D

∗ (1) (20)

−u1D
∗ (2) ≤ xp(2) ≤ umax − u1D

∗ (2) (21)
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Fig. 4. 2-D PSO Optimal Solution

This approach of increasing discretization by repeatedly
doubling the time-steps can be continued until the desired
number of discretized time-steps is reached. Thus, 1D,
2D, 4D, ... , 2m−1D PSOs are performed sequentially to
arrive at the C-rates for the 2m time-steps. At each new
PSO formulation, the overall average current is maintained
to be ūcc with the discretization rule for the ND PSO
summarized in Eq. (22).

u2ND
∗ (2n− 1) + u2ND

∗ (2n)

2
= uND

∗ (n); for n = [1 : N ] (22)

In this example, discretization up to 8 time-steps was
desired, and so 1D, 2D and 4D PSOs were run and the
final solution is illustrated in Fig. 5.
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Fig. 5. 4-D PSO Optimal Solution

For a simplified case without considering the discharge
cycle, the C-rate profile obtained from the PSO algorithm
is compared against that from the DP algorithm described
in Sundstrom and Guzzella (2009). The solutions are
shown in Fig. 6, where the overall shape of the charge
profiles are similar between the two algorithms, with a
root mean square deviation of 0.57 and total Qloss listed
in Table 2. The difference in resulting solutions may be
attributed to the metaheuristic nature of the PSO and
the discretization of the DP algorithm used. Additionally,
this DP algorithm interpolates for state variable positions
and uses a backward recursion approach while the PSO
simulates forward.
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Table 2. DP vs PSO Computation

Computation Time Qloss

DP 3̃ Hours 0.019%

PSO 3̃ Minutes 0.020%

4. RESULTS

Following the optimization steps prescribed earlier, an 8-
step charging profile was obtained for a 15-minute DC fast
charge (20% to 80% SOC) initialized at 25◦C followed by a
complex EV duty cycle discharge (to 20% SOC). The ob-
tained charging profile is compared with a baseline policy
that uses constant-current in Fig. 7, which also shows the
battery temperature during charging and discharging. The
total capacity fade after the optimized charge-discharge
cycle was found to be 0.1015% while that for the baseline
was found to be 0.1022% over a single cycle.
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Fig. 7. Optimal Charging Policy and Temperature with
Discharge Considered in Optimization

To evaluate the importance of considering the driving load
immediately after DCFC, another study was conducted
in which only the charging profile was optimized (the
discharge was not included in optimization). The resulting
optimized charge policy left the battery 12◦C hotter than
in the previously studied charge policy that accounted for
future discharge. This is shown in Fig. 8 and the resulting
capacity fade of the battery from this policy was 0.1362%
compared to that of the baseline constant-current policy
of only 0.1022% over just one cycle.
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Fig. 8. Optimal Charging Policy and Temperature without
Discharge Considered in Optimization

One of the primary mechanisms of degradation is capacity
loss due to SEI layer growth, which is greater when
the battery is held at a high SOC. Therefore, keeping
the battery at a lower SOC for a longer period would
be advantageous to limit capacity fade, as seen in the
profiles obtained from the PSO. Additionally, temperature
also plays a significant role in capacity loss, both in the
loss of active material and in the SEI layer growth by
affecting the reaction rate multiplied with kSEI and kLAM .
This explains why the optimized profiles do not impose
larger C-Rates on the battery which would yield larger
temperatures.

It is also of interest to evaluate how the optimized charge
policy evolves over extended simulations because the ca-
pacity loss due to SEI layer growth contributes lesser to
the total capacity loss as the battery ages (Salyer et al.
(2021a); Jin et al. (2017); Safari and Delacourt (2011)).
With a battery starting at 0% capacity fade, the charge-
discharge cycle of the initial study was repeated 100 times,
where the PSO optimization of charging was repeated
every 10 cycles. This result is shown in Fig. 9.
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Fig. 9. Evolution of Optimal Charging Profile as the
Influence of QSEI Decreases

It is clear that at charging sessions in later battery life the
optimal policy limits the amount of battery temperature
rise (due to high C-Rate) rather than limiting time at
high SOC given that QLAM becomes the dominant loss
mechanism in Qtotal. The result tends to yield a charge
profile increasingly similar to a constant-current charge
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profile and it can be assumed that this trend will continue
as time goes on.

5. CONCLUSIONS

In this paper, a PSO algorithm was used to optimize a
discrete-step DCFC current profile, such that the battery
capacity fade was minimized. The capacity fade due to
an expected drive cycle immediately after charging was
imposed as an additional cost in the objective function
to mimic realistic charging and driving conditions. The
results of the PSO algorithm showed a decrease in overall
capacity fade compared to the baseline CC profile and was
computationally efficient enough to be solved in real time.
Future work will include the use of data driven methods to
generate synthetic current profiles for the driving portion
of the optimization problem.
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