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Abstract: A typical urban signalized intersection poses significant modeling and control
challenges in a mixed traffic environment consisting of connected automated vehicles (CAVs)
and human-driven vehicles (HDVs). In this paper, we address the problem of deriving safe
trajectories for CAVs in a mixed traffic environment that prioritizes rear-end collision avoidance
when the preceding HDVs approach the yellow and red signal phases of the intersection. We
present a predictive control framework that employs a recursive least squares algorithm to
approximate in real time the driving behavior of the preceding HDVs and then uses this
approximation to derive safety-aware trajectory in a finite horizon. We validate the effectiveness
of our proposed framework through numerical simulation and analyze the robustness of the

control framework.
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1. INTRODUCTION

Optimal coordination of connected automated vehicles
(CAVs) can improve network performance, e.g., fuel econ-
omy, traffic throughput, at traffic scenarios such as ur-
ban intersections, see Talebpour and Mahmassani (2016).
In recent efforts, a decentralized optimal control frame-
work has been established for real-time coordination of
CAVs traveling through signal-free automated intersec-
tions, see Malikopoulos et al. (2021); Chalaki and Ma-
likopoulos (2021); Mahbub and Malikopoulos (2021); Ku-
maravel et al. (2021). However, these approaches have
been developed based on the strict assumption of 100%
CAV penetration rate which is currently not realizable;
see Alessandrini et al. (2015).

CAVs must be able to safely co-exist with human-driven
vehicles (HDVs) resulting in a mized traffic environment,
which pose significant modeling and control challenges due
to the stochastic nature of human-driving behavior. Fur-
thermore, the use of conventional traffic lights is still the
most prevalent way of traffic control at urban intersections
that adds an extra layer of complexity in modeling the
HDV behavior due to the presence of the zone of yellow
light dilemma; see Zhang et al. (2014). Thus, the need for
an efficient CAV control framework considering the inclu-
sion and interaction of HDVs approaching the signalized
intersections is essential to provide safety assurance under
unknown HDV behavior.

Several research efforts have adopted adaptive cruise con-
trol (ACC) for automated vehicles in a mixed traffic envi-
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ronment to tackle the HDV behavior and ensure rear-end
collision avoidance; see Jiang et al. (2007); Yuan et al.
(2009). Lu et al. (2019) considered a variation of the car-
following model to design an eco ACC controller. However,
ACC controllers using car-following models such as the
intelligent driver model (IDM) (Treiber and Kesting, 2013)
do not always perform well since they can have stabil-
ity implications leading to rear-end collision; see Milanés
and Shladover (2014). Milanés et al. (2013) proposed a
cooperative adaptive cruise controller where the control
parameters are derived using system identification on real-
world experimental data. However, such control param-
eters cannot capture the instantaneous changes in HDV
behavior. Naus et al. (2010) proposed an explicit model
predictive control (MPC) ACC controller that employs
a prediction model with a constant speed assumption of
the preceding vehicle and does not consider the complex
car-following dynamics of the human driver. Dollar et al.
(2021) utilized an IDM model to identify offline the human
driving styles in a car-following scenario and developed
an MPC-based cruise control for a CAV. Jin and Orosz
(2018) proposed an optimal cruise control design in which
feedback gains and driver reaction time of HDVs were
estimated in real time by a sweeping least square method.

In this paper, we consider the problem related to control-
ling a CAV while approaching a signalized intersection in
the presence of multiple preceding HDVs with unknown
driving behavior. To generate safe and optimal control
actions for the CAV, we propose a data-driven predictive
control framework that takes into account the future tra-
jectories of the HDVs to ensure that the collision does not
take place over a finite-time horizon. The control frame-
work is then implemented in a receding horizon manner for
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Fig. 1. A connected and automated vehicle (green) and
human-driven vehicles (yellow) approaching a signal-
ized intersection at red signal phase.

robustness against stochastic driving behavior of HDVs.
The constant time headway relative velocity (CTH-RV)
model and the recursive least squares (RLS) algorithm are
utilized to estimate the HDV’s driving behavior given the
data collected online. We evaluate the efficiency of the
proposed method by numerical simulations that employ
a nonlinear car-following model to replicate the human
drivers.

The remainder of the paper is organized as follows. In
Section 2, we present the modeling framework and for-
mulate the problem. In Section 3, we provide a detailed
exposition of the safety-aware and data-driven predictive
control framework with real-time behavior estimation. In
Section 4, we evaluate the effectiveness of the proposed
approach in a simulation environment. Finally, we draw
conclusions and discuss the future research directions in
Section 5.

2. PROBLEM FORMULATION

We consider multiple HDVs followed by a CAV traveling
on a single-lane road and approaching an urban signalized
intersection with a red (or yellow then red) traffic signal
phase (Fig. 1). Note that, the general idea of our formula-
tion can be extended to different cases such as yield/stop
traffic sign, downstream traffic congestion, and pedestrian
crossing, where the preceding HDVs’ motion can change
abruptly to come to a full stop. Next, to facilitate our
exposition we provide the following definitions.

Definition 1. Suppose that the red signal phase is active
at some time instant ¢ = t°. The set N of the vehicles
approaching the intersection at t = t° is N' = {N,N —
1,...,1}, where N € N is the total number of vehicles
under consideration. Here, the vehicles are assigned integer
indices by the order of their respective distances from
some fixed stopping position py located downstream near
the signal head. The indices N, N —1,...,2 represent the
HDVs followed by the CAV denoted by the index 1.

Definition 2. The set of HDVs at time instant ¢ = t¥ is
Napv =N \ {1}

When the red signal phase is active at some time instant
t = t9, the HDV-N in A must stop behind the position
po. The objective of the CAV-1 is to derive an optimal
trajectory to stop behind HDV-2 such that no rear-end
collision takes place.
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Remark 3. In our formulation, we require that the set of
HDVs Nypy is non-empty at time instant ¢ = t° when
the red signal phase of the intersection is active. If Ngpyv
is empty, then the problem of avoiding rear-end collision
becomes redundant.

2.1 Communication Topology

The CAV-1 is retrofitted with appropriate sensors and
communication devices to estimate in real time the state
information of the preceding HDVs in ANygpy through
vehicle-to-everything communication protocol and intel-
ligent roadside units; see Duan and Yang (2021). We
refer to the unidirectional flow of information from the
preceding HDVs in Mppv to the trailing CAV-1 as the
multi-predecessor communication topology.

We impose the following assumption.

Assumption 4. Communication to and from the CAV oc-
curs without any delays and errors.

Assumption 4 may be strong, but it is relatively straight-
forward to relax it as long as the noise in the measurements
and/or delays is bounded.

In contrast, the trajectory of each HDV ¢ in Nygpy is solely
dictated by the perception of the state information of the
immediate preceding HDV i + 1 in AMgpy. For the leading
vehicle HDV-N that does not have a preceding vehicle,
its driving actions depend on the relative distance to the
stopping point.

2.2 Vehicle Dynamics and Constraints

We consider the following discrete-time model with a
sampling time 7 € RT to represent the dynamics of each
vehicle i € NV,

pilt+1) = pi0) + w0 + 3w, (1)

vi(t+ 1) = v (t) + ui ()7, (1b)
where p;(t) € Py, vi(t) € V;, and u;(t) € Y; denote the po-
sition, speed and control input (acceleration/deceleration)
of each vehicle 7 in . The sets P;, V;, and U;, i € N(t), are
complete and totally bounded subsets of R. Note that in
the discrete-time dynamics model (1), we assume that the
control input u;(t) of each vehicle ¢ in N remains constant
in the time period of length 7 between time instants ¢ and
t + 1, which is different to some previous approaches that
assume constant speed between time instants ¢t and ¢ + 1;
see Naus et al. (2010); Kianfar et al. (2012).

To ensure that the control input and vehicle speed are
within a given admissible range, the following constraints
are imposed,

Umin < Ui(t) < Umax, and (23)

0 S Umin § U; (t) S Umax» (Qb)
where Umin, Umax are the maximum braking and accelera-
tion, respectively, of each vehicle in A, and vpin, Umax are
the minimum and maximum speed limits, respectively.

The control input u;(¢) of each vehicle i € N in (1)
can take different forms based on the consideration of
connectivity and automation. For CAV-1 in N/, we consider
a switching control framework based on the following
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cases: if at time instant ¢t = t° (Remark 3) (a) Napy
is empty, then CAV-1 derives its control input by using
its default adaptive cruise controller (see Milanés and
Shladover (2014)), (b) if Mgpv is not empty, then CAV-1
derives and implements the control input u;(t) using the
proposed control framework discussed in Section 3.

For each HDV i € Nupv, however, we consider a car-
following model to represent the predecessor-follower cou-
pled dynamics (Fig. 1) with its preceding vehicle ¢+ 1 that
has the following generic structure

u;i(t) = fi(Api(t), vi(t), Avi(t)), (3)

where f;(-) represents the behavioral function of the car-
following model of vehicle i € Nppy, and Ap;(t)
pit1(t) — pi(t) — I and Aw;(t) := v;41(t) — v;(t) denote
the headway and approach rate of vehicle ¢ with respect
to its preceding vehicle i+ 1, respectively. We consider two
edge cases that may arise from the above definitions: (a) if
there is no vehicle ¢+ 1 preceding vehicle ¢ within a certain
look-ahead distance dy, then we consider Ap;(t) = dy
and Awv;(t) = 0, and (b) if there is an obstruction/red
signal phase immediately ahead of vehicle ¢ at a distance
ds, then Ap;(t) = ds and Av;(t) = —wv;(t). There are
several car-following models reported in the literature that
can emulate a varied class of human driving behavior; see

Weng and Wu (2001).

The parameters of a car-following model can be recovered
from historical data using offline identification methods;
see Treiber and Kesting (2013). However, since the histor-
ical data might not be available and the human driving
behavior usually changes over time, offline identification
methods do not work well in practice. As a result, in our
proposed framework, we consider that the CAV does not
have full prior knowledge of the behavioral function f;(-) of
the preceding HDVs. Instead, the CAV assumes a specific
type of car-following model for the HDV, then estimates
the model parameters for each HDV online using real-
time collected data. A method for estimating car-following
model parameters of the HDVs is given in Section 3.1.

To capture the car-following characteristics of the preced-
ing HDV-2’s dynamics from the CAV-1’s control point of
view, we define additional states as

ep(t) = pa(t) —p1(t) — L,
ey (t) = va(t) — v1(t).

To introduce the rear-end collision avoidance constraint,
we first use the following definition of dynamic safe fol-
lowing headway s;(t).

Definition 5. The dynamic safe following headway s;(t)
between two consecutive vehicles ¢ and (i +1) € N is

si(t) = pivi(t) + so, (5)

where p; € Rt denotes a desired time headway that each
vehicle i € AN maintains while following the preceding
vehicle, and sg € RT is the standstill distance denoting
the minimum bumper-to-bumper gap at stop.

The rear-end collision avoidance constraint between CAV-
1 and its immediately preceding HDV-2 can thus be
written as

ep(t) > s1(t).

(6)

53

p3(), v3(t)

p2(0), v (1)

N \ h

4* Communication

HDV-2

Lz () = fo(Ap, (1), Av, (1))

HDV-3
uzp) = f3(8p3(t), Avs(t))

~

Parameter Estimator

( Internal CFM for HDV-3

Receding Horizon Control
Prediction of HDV-2 state
trajectories

Optimal Control sequence for
minimizing tracking error states

Internal CFM for HDV-2

K p1(6),v1(6)

Fig. 2. The structure of the proposed control framework
to address Problem 6.

—
= ey
5

First input uj (t) of the control
sequence

/

We now formalize the main objective of the CAV-1 control
framework.

Problem 6. Given the multi-predecessor communication
topology (Section 2.1), the main objective of CAV-1 is
to derive its optimal control input uj(¢) such that CAV-1
adapts to its preceding HDV’s driving behavior in real time
and drives the states e,(t) and e,(t) to their respective
reference states with minimum control effort satisfying the
state, control and safety constraints in (2)-(6).

3. CONTROL FRAMEWORK

In our approach, we adopt a receding horizon predic-
tive control framework with multi-predecessor commu-
nication topology and data-driven estimation of HDVS’
car-following parameters for state prediction to address
Problem 6, as shown in Figure 2. In the receding horizon
control, the optimal control input at the current time step
is obtained by solving a predictive control problem with a
horizon T}, while only the first element of the obtained con-
trol input sequence is implemented. Afterward, the horizon
moves forward one step, and the above process is repeated
until a final horizon is reached; see Borrelli et al. (2017).
Note that, the prediction horizon T}, is usually selected
empirically to best accommodate the control performance
and computational requirement. The essential steps of the
proposed framework are outlined as follows.

(1) Data-driven parameter estimation: At each time
instant ¢, the current states p;(t),v;(t) of each pre-
ceding HDV i in Nygpvy is communicated to CAV-1.
Since the exact car-following model f; of each HDV ¢
in MVgpv is unknown to CAV-1, it considers a specific
type of car-following model to represent the driving
behavior of each HDV, and estimates the parameters
of the car-following model for each HDV online.
Predictive control problem: CAV-1 then uses the
estimated car-following model from Step 1 to predict
the future state trajectories of the immediately pre-
ceding HDV-2 and derives its own optimal control in-
put sequence U7 (t) := [u}(t), ui(t+1),...,uj(t+T,—
1)]T using the receding horizon control framework
discussed above. Finally, CAV-1 implements only the
first control input uj(t).
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In what follows, we provide a detailed exposition of the
steps discussed above.

3.1 Online Car-following Model Parameter Estimation

In this section, we use a recursive least-squared formu-
lation (Ljung and Soderstrom, 1983) to estimate the pa-
rameters of the internal car-following model residing in
CAV-1’s mainframe to represent the driving behavior of
each of the preceding HDVs. To this end, we consider the

CTH-RV model (Wang et al., 2020)
vi(t +1) = vi(t) + ni(Api(t) — pivi(t)) T+
. o (7)

vi(vi(t) — vi(t))T,

where the model parameters 7; and v; are the control gains
on the constant time headway and the approach rate, and
p; is the desired safe time headway for each HDV ¢ in
Nupv, respectively. We employ the linear CTH-RV model
instead of other complex nonlinear models so that the
resulting control problem presented in the next section
is thus convex and can be solved efficiently in real-time.
Moreover, it is also observed that the CTH-RV model is
highly comparable to other nonlinear car-following models

in terms of data fitting (Gunter et al., 2019).

Suppose that we measure the speed v;(t), headway gap
Ap;(t) and approach rate Aw;(t) for each preceding HDV
i in Ngpy with sampling rate 7. We recast (7) as

0 (t+ 1) = 7i,105(t) + v5,28pi () + v301(2), (8)
where ;1 := (1 — (mipi +v3)T), vi,2 := 7 and ;3 == v;T
are the parameters that can be estimated using the RLS
algorithm. The original model parameters n;,v; and p;
are then uniquely determined from <; 1,7 2,73 as long
as ;2 # 0. Next, we can write (8) in matrix form as

it +1) = ¢i(t), 9)
where ¢;(t) = [v;(t), Ap;(t), vi(t)]T is the regressor
vector and y; := ['ym, 4,2, %-73] is the parameter vector.

We can estimate 7; using the following recursive least
squares algorithm as follows (Ljung and Séderstrom, 1983)

40 = At — 1) + Le®er() — :(0)], (10)
Bi(t) =" (t = 1)), (10b)
R Da )
L) = om0t - Do) (10c)
o[ Pl D06~ )
B =B =D = = Bt = Don®)

(10d)

Here, £ € [0, 1] is the forgetting factor that assigns a higher
weight to the recently collected data points and discounts
older measurements, and 4;(¢) denotes the estimate of the
parameter vector 7; at time instant ¢, which is updated
recursively as new data becomes available. In what follows,
we introduce the predictive control problem that is needed
to be solved.

3.2 Predictive Control Problem

The main objective of the predictive controller of the
CAV is to (a) drive the position tracking state e,(t) to
a reference e, »(t), (b) drive the speed tracking state e, (t)
to zero, and (c¢) minimize CAV-1’s control input wuy(%).
To this end, the receding horizon controller generates
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the predictive states ey(t + nft), e (t + nft) for n =
1,...,T, at each time instant ¢ for a predictive horizon
T, using the state definitions in (4), vehicle dynamics in
(1) and internal car-following models of the HDVs in (7)
approximated in the previous section. Then the control
input sequence Uy (t) := [u1(t), wa(t+1),...,u1(t + T —
1)]7 is derived such that the predictive states are driven
to their respective reference states. The predictive control
problem thus can be written as

TP
1

min — E

Ui (t) 2 — |:wep (ep(t + 77/|t) — ep,'r(t + nlt))2 (11)

+ We, € (t 4+ n|t)? + wy (ur (t +n — 1)),

subject to :

model: (1), (3), (4),

constraints: (2), (6),

reference state: ey, »(t) 1= s1(¢),

where the predictive reference state e, ,.(t + n|t) can be
computed using the relation e,,(t) = si(t) and the
dynamics model in (1) and (4), and we,,we,,w, € RT
are the weights on the reference tracking of the headway
ep(t), speed deviation e, (t), and the CAV-1’s control input
uy(t), respectively.

The predictive control problem in (11) can be transformed
into a standard constrained quadratic programming prob-
lem and solved using commercially available solvers; see
Andersson et al. (2019a). At each discrete time instant ¢,
the optimal control sequence U7 (t) is computed by solving
(11) and only the first control input uj(¢) is applied. Then
the system moves to the next time instant ¢ + 1 and the
process is repeated until a final time horizon is reached.

Remark 7. While implementing the above control frame-
work, if any of the preceding HDVs leaves the current lane
or passes the intersection at any time instant ¢, we simply
update the sets N and Mypy starting from the next time
instant t+1, where the control problem (11) is again solved
with the updated information.

4. SIMULATION AND RESULT

This section validates the performance of the proposed
safety-aware data-driven predictive control by numerical
simulations at a mixed-traffic signalized intersection.

4.1 Simulation Setup

In the simulations, we utilize a nonlinear car-following
model namely the optimal velocity model (OVM) to gener-
ate the driving actions of simulated human drivers (Bando
et al., 1995). The car-following OVM is given as

ui(t) = a(Vi(t) — vi(t)) + BAvi(t), 12)
Vi(t) = U?d(tanh (Api(t) — si(t)) + tanh(s;(t))).

The parameters of the OVM for each HDV include the
driver’s sensitivity coefficients o and 3, and the desired
speed vg4. These parameters for the simulated HDVs are
assumed to be different to each other and chosen by
random perturbations up to 20% around the following
nominal values: a = 0.8, 8 = 0.6, vy = 15.0m/s, p =
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Table 1. Parameters of the controller

Parameters Value Parameters Value
T 0.1s Ty 50
VUmax 15 IH/S VUmin Om/s
Umax 3m/s? Umin 5m/s?
p 2.0s S0 3.0m
We,, 1 We, 0.1
Wey 1
2.0s, sp = 5.0m. The parameters and weights in the

predictive control framework used for the simulations are
given in Table 1. The RLS-based estimators are initialized
with the following values: ~;(0) = [0.67,0.1,0.18]7 and
P;(0) = 0.0115 where I3 is the 3 x 3 identity matrix,
while the forgetting factor is chosen as ¢ = 1.0. The
impact of € on RLS algorithm is investigated in detail
by Vahidi et al. (2005) and thus, omitted here. Python is
used in the simulations in which the constrained optimal
control problem is formulated by CasADi framework;
see Andersson et al. (2019b), and solved by the built-in
qpOASES solver.

4.2 Results and Discussions

The results for a numerical simulation involving a CAV
and 2 preceding HDVs are illustrated in Fig. 3, in which
the longitudinal positions, speeds, and headways of all the
vehicles are given in Figures 3a, 3b and 3c, respectively.
Note that the position by which the vehicles must stop is
po = 0, and for the leading HDV, the headway is computed
as the relative distance to the stopping point. As can be
seen from Figures 3a-3c, the simulated HDVs slow down
and then stop while approaching the signalized intersec-
tion. Given the behavior of the HDVs, the proposed control
framework can perform safe and comfortable braking for
the CAV without violating any of the state, input, and
safety constraints.

Moreover, to assess the scalability of the proposed control
framework to the number of preceding vehicles, we conduct
three other simulations for the scenarios with 4, 5, and 6
vehicles (3, 4, and 5 HDVs, respectively) and illustrate
the vehicle trajectories in Fig. 4. These results verify that
the proposed control framework works effectively with
different numbers of preceding vehicles.

Finally, the estimated parameters in the CTH-RV car-
following model for the HDV-2 are depicted in Fig. 5. As
more real-time data are added to update the estimations,
the car-following parameters stabilize to the set of values
that accurately describes the driving behavior of the
HDVs. Therefore, using the linear CTH-RV model and
online RLS technique, we can approximate a nonlinear
car-following model and use this estimation to predict the
future states of the HDVs.

5. CONCLUDING REMARKS

In this paper, we addressed the problem of a CAV traveling
in a mixed traffic environment and approaching a signal-
ized intersection. A data-driven predictive control frame-
work was developed in which the car-following behavior
of HDVs ahead of the CAV is modeled by the CTH-RV
model with online estimated parameters through the RLS
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algorithm. In the proposed framework, by utilizing data-
driven car-following models, the CAVs can predict the
future behavior of the HDVs and then derive their optimal
safety-aware trajectory in a finite horizon. The proposed
control framework was validated by numerical simulations
with multiple preceding HDVs showing that the generated
control actions can ensure safe braking for the CAVs. A
direction for future research should focus on extending this
framework to consider multi-lane traffic intersections with
lane changing behavior of the HDVs.
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