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Abstract For advanced pre-mixed combustion concepts, Cylinder Pressure-Based Control is a
key concept for robust operation. It also opens the possibility for on-line heat release shaping.
For cost and time efficient development of these controllers, fast control-oriented combustion
models that predict average in-cylinder pressure traces have been proposed. However, they
are not able to capture cyclic variations. In this study, a data-based modelling procedure is
proposed to predict the in-cylinder pressure trace and cyclic variation during the combustion
cycle. The inputs to the model are the in-cylinder conditions at intake valve closing and the
fuelling settings. The proposed model is based on experimental data, Principal Component
Analysis and Gaussian Process Regression. This new data-driven approach is applied to model
the combustion behaviour of a Reactivity Controlled Compression Ignition engine running on
Diesel and E85. The resulting model has a root-square-mean-error of average behaviour and
cyclic variance of 0.8◦ and 0.2◦2 in CA50, 0.1 bar and 0.03 bar2 in Gross Indicated Mean Effective
Pressure, and 0.1% and 0.001%2 in the Gross Indicated Efficiency, respectively.

Keywords: Advanced combustion concepts; Dual-fuel combustion; Empirical model;
Control-oriented model; Principle Component Analysis; Gaussian Process Regression

1. INTRODUCTION

Internal Combustion Engines (ICEs) will remain the
main power source for heavy-duty applications (e.g., over-
seas and long-distance on-road transportation, agriculture,
construction and mining). To support the transition to-
wards sustainable solutions, Reactivity Controlled Com-
pression Ignition (RCCI) is a promising concept. In RCCI
both a low and high reactive fuel are used in the combus-
tion process (Reitz and Duraisamy, 2015). By changing the
ratio between low and high reactivity fuels it is possible to
optimize combustion phasing, duration and magnitude. It
is more efficient and cleaner compared to traditional diesel
engines and an enabler for using renewable fuels. However,
to make it commercially viable, next-cycle control is nec-
essary to guarantee robust and safe operation (Paykani
et al., 2021).

Cylinder Pressure-Based Control (CPBC), as a next-cycle
control method, is a key concept for enabling RCCI
(Willems, 2018). In CPBC, the in-cylinder pressure is
used to generate new actuator settings. Acquiring CPBC-
oriented models is a major hurdle for model-based control
and control evaluation. Especially for model-based control,
computation times should be below the duration of a
combustion cycle. On top of that, Mean-Value Engine
Models (MVEMs) will not provide enough information
in the cases of large cyclic variations. Therefore, useful
models should include a measure for these variations.

Basic physics-based models have been presented to model
the important combustion measures (e.g., Gross Indicated
Mean Effective Pressure (IMEPg) or crank angle where x%
of the total heat is released (CAx)) Khodadadi Sadabadi
et al. (2016); Guardiola et al. (2018); Raut et al. (2018);

Kakoee et al. (2020). These models do not provide the
full in-cylinder pressure trace, but only provide a deter-
ministic dynamic model for combustion measures. As a
consequence, new models need to be derived when new
measures need to be included and are not suited to be
used for Combustion Rate Shaping. This will reduce the
amount of flexibility these models provide while developing
new control strategies.

More complex physics-based models, like the multi-zone
model of Bekdemir et al. (2015) and computational fluid
dynamics models of Klos and Kokjohn (2015), have the
ability to predict the full in-cylinder pressure trace. How-
ever, these models exceed the computation time con-
straint. Therefore, static deterministic regression models
are used for the important combustion measures to meet
the required computation time. These regression models
have the in-cylinder conditions at Intake Valve Closing
(IVC) as input parameters.

By contrast, data-based combustion models have been
developed. Xia et al. (2020) propose a data-based model
using Gaussian Process Regression (GPR) to map in-
cylinder conditions at IVC to important combustion mea-
sures. They have used this model to optimise engine perfor-
mance. Basina et al. (2020) used a data-based state-space
model with linear varying parameters to model combus-
tion phasing and Peak Pressure Rise Rate (PPRR). Both
methods only provided a model for specific combustion
measures, thus including additional combustion measures
requires an extension of these models.

A data-based model to model the full in-cylinder pressure
trace for varying operating conditions is presented by
Pan et al. (2019). Using Principal Component Analysis
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E85 tank

Figure 1. Experimental 6-cylinder PACCAR MX13 engine
equipped with a PFI-injector (Willems et al., 2020)

(PCA), they reduce a set of measured in-cylinder pressure
traces at different operating conditions to several Principal
Components (PCs) and use artificial neural networks to
predict the coefficient for each component. With this
method, they are able to predict the in-cylinder pressure
in real-time.

Except for Xia et al. (2020), all of the above mentioned
methods are deterministic, thus do not include information
about cyclic variations. This is an important measure for
control development, where in regions with large cyclic
variations controllers can be tuned to be more conserva-
tive. However, in regions with small cyclic variations it
becomes possible to tune controllers to be more aggres-
sive. Thus fast convergence can be achieved in regions
with small cyclic variations, while still guaranteeing stable
operation in regions with large cyclic variations.

In this paper, we will present a data-based CPBC-oriented
modelling method that is able to describe the full in-
cylinder pressure trace including a measure for cyclic
variations. The combustion nucleus is modelled using PCA
similar to Pan et al. The artificial neural networks they use
are replaced with GPR models to capture the inaccurate
measurements of the in-cylinder conditions at IVC and the
cyclic variations.

2. ENGINE SETUP

In this paper, the same setup and experimental data has
been used as in Willems et al. (2020). Below only the most
relevant information is provided.

Figure 1 shows the 6-cylinder PACCARMX13 engine used
in this study. Only cylinder 1 is active. The cylinder heads
of cylinders 2-6 have been removed and no fuel is injected
into these cylinders. To enable RCCI operation, the engine
uses a Direct Injection (DI) system to inject diesel directly
into the cylinder and a Port Fuel Injection (PFI) system to
inject E85 in the intake port. An electric machine is used
to generate the torque required to keep the engine running
at a constant speed.

In this paper, the focus is on RCCI with a single injection
of diesel to auto-ignite the well-mixed charge of E85, air
and recirculated exhaust gas. Table 1 shows the nominal

operating conditions. In this study, we have performed
m = 105 training experiments and m̄ = 45 validation
experiments at different in-cylinder conditions at IVC
and fuel setting. Each experiment contains M = 100
combustion cycles.

It is not possible to exactly know the in-cylinder conditions
at IVC as a result of sensor noise, when one sensor is used
for multi-cylinder operation or difference in injected fuel
quantity and the fuel quantity available for combustion
caused by physical phenomena (e.g., wall-wetting or inad-
equate vaporization). To give an estimate of the in-cylinder
conditions at IVC ŝIVC, we have chosen to use n = 6 mea-
surable parameters that capture these conditions, namely:

• Total injected energy

Qtotal = mPFILHVPFI +mDILHVDI;

• Energy-based blend ratio

BR =
mPFILHVPFI

Qtotal
;

• Start-of-injection of the directly injected fuel SOIDI;
• Pressure at the intake manifold pim;
• Temperature at the intake manifold Tim; and
• Exhaust Gas Recirculation (EGR) ratio

XEGR =
CO2,in

CO2,out

with CO2,in and CO2,out the concentration of CO2 at
the intake and exhaust, respectively.

Figure 2 shows the distribution of the variation in in-
cylinder conditions at IVC and fuel settings for each mea-
sure pressure trace in the training data. On the diagonal
the distribution of each in-cylinder conditions at IVC and
fuel settings is shown, while the off-diagonal shows the
joint distribution between in-cylinder conditions at IVC
and fuel settings. A sweep over a range of SOIDI has been
applied, changes in other parameters are caused by random
uncontrolled variations on the setup.

3. COMBUSTION MODEL

The combustion model described in this section is used
to predict the in-cylinder pressure during the combustion
cycle. In this approach, PCA is used to reduce the amount
of required stored data by decomposing the measured
in-cylinder pressure traces into a weighted sum of basis
functions. Thereafter, Gaussian Process Regression (GPR)
is used to go from a discrete set of measured operating
conditions to a continuous operating space by creating a
continuous mapping from in-cylinder conditions at IVC
and fuel setting to weights used in the weighted sum of
basis functions.

Table 1. Specifications and nominal operating conditions
of the engine setup

Parameters Value

PFI fuel E85
DI fuel Diesel (EN590)
Compression ratio 15.85
Intake valve closure −153◦CA aTDC
Exhaust valve opening 128◦CA aTDC
Intake temperature 40 ◦C
Gross IMEP (8.5± 1.0) bar
Fuel energy input (3850± 100) J/cycle
Engine speed 1200 rpm
In-cylinder pressure sensor Kistler 6125C
Crank angle resolution 0.2◦
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Figure 2. Distribution of in-cylinder conditions at Intake Valve Closing and fuel settings over the mM combustion cycles
used during model training and validation

Having mM measured combustion cycles and using PCA
similar to Pan et al. (2019), the in-cylinder pressure can
be decomposed into mM − 1 PCs such that the measured
pressure trace can be represented by

p(θ, sIVC) = wT(ŝIVC)f(θ) + fµ(θ) (1)

with crank angle θ ∈ (−180, 180), estimated in-cylinder
conditions at IVC and fuel settings ŝIVC as described
in Section 2. The mean pressure over all cycles fµ(θ) is
determined as

fµ(θ) :=
1

mM

∑
sIVC

p(θ, sIVC). (2)

The PCs f(θ) := [f1(θ) f2(θ) · · · fmM−1(θ)]
T

being
the eigenvectors of PTP , with P a matrix consisting
of the elements p(θ, sIVC) − fµ(θ) where the columns
span all measured sIVC and the rows span all measured
θ ∈ (−180, 180). Using fµ(θ) and f(θ), the weights

w(ŝIVC) := [w1(ŝIVC) w2(ŝIVC) · · · wmM−1(ŝIVC)]
T

for
each measured pressure trace can be found by solving (1).

The PCs are ordered from most relevant to least relevant
by ordering the eigenvalues of PTP in descending order.
For illustration, Figure 3 shows fµ(θ) and the first four
PCs. It shows that the higher-order PCs add higher
frequency components to the decomposition. This makes it
possible to reduce the required amount of information by
selecting the m̃ most relevant PCs based on the accuracy
of performance and combustion measures. This gives an
estimation of the in-cylinder pressure as

p(θ, ŝIVC) ≈ p̃(θ, ŝIVC) = w̃T(sIVC)f̃(θ) + fµ(θ) (3)

with the reduced set of PCs f̃(θ) :=
[
f1(θ) f2(θ) · · · fm̃(θ)

]T
and weights w̃(sIVC) :=

[
w1(sIVC) w2(sIVC) · · · wm̃(sIVC)

]T
.

Small unmeasurable deviations in in-cylinder conditions
at IVC and fuel settings make it impossible to have exact
knowledge of w̃(ŝIVC). Therefore, we will describe w̃(ŝIVC)
as a stochastic process, such that

w̃(ŝIVC) := N (ŵ(ŝIVC), W (ŝIVC)) (4)

with ŵ(ŝIVC) := E[w(ŝIVC)] andW (ŝIVC) := E[(w̃(ŝIVC)−
ŵ(ŝIVC))(w̃(ŝIVC)−ŵ(ŝIVC))

T]. This makes it possible to
describe the in-cylinder pressure as a stochastic process
with mean and covariance as

E [p̃(θ, ŝIVC)] = ŵT(ŝIVC)f̃(θ) + fµ(θ) (5)

and

E
[
(p̃(θ, ŝIVC)− E[p̃(θ, ŝIVC)])

2
]
= f̃

T
(θ)W (ŝIVC)f̃(θ). (6)

Notice that in (6) wi(ŝIVC) and wj(ŝIVC) ∀i, j ∈
{1, 2, . . . , m̃} are not assumed to be independent.

Figure 4 shows the (joint) distribution of w̃(ŝIVC) over
M cycles at the same operating point ŝIVC for the case
m̃ = 5. Comparable results are obtained for different
operating points. On the diagonal, it shows that wT

i (ŝIVC)
∀i ∈ {1, 2, . . . , m̃} can be approximated by a normal
distribution. We will use the Pearson correlation coefficient
matrix R to investigate the degree of linear dependence of
wi(ŝIVC) and wj(ŝIVC) ∀i, j ∈ {1, 2, . . . , m̃}. The Pearson
correlation coefficient is given by
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Figure 4. Distribution of scaled wT(ŝIVC) for 100 cycles at the same operating point ŝIVC for the first five principle
components. The diagonal elements show the histogram of wi(ŝIVC) and the off diagonal elements show the
distribution of wi(ŝIVC) with wj(ŝIVC).

Figure 3. fµ(θ) and the first four PCs

rij =
1

M − 1

M∑
k=1

S

{
wi,k(ŝIVC)− µ(wi(ŝIVC))

σ(wi(ŝIVC))

×wj,k(ŝIVC)− µ(wj(ŝIVC))

σ(wj(ŝIVC))

}
,

where µ(wi(ŝIVC)) and σ(wi(ŝIVC)) are the mean and
standard deviation of the weights for each cycle wi,k(ŝIVC),
respectively. For the shown operating point, the symmetric
Pearson correlation coefficient matrix is given by

R =


1

−0.10 1
0 0.17 1

0.14 0.09 −0.02 1
−0.06 0.10 0 0.14 1


and shows small linear dependence between wi(ŝIVC)
and wj(ŝIVC) ∀i, j ∈ {1, 2, . . . , m̃}. Now we can as-
sume that wi(ŝIVC) and wj(ŝIVC) are linear independent
(Wij(ŝIVC) = 0 when i ̸= j) and (6) can be reduced to

E
[
(p̃(θ, ŝIVC)− E[p̃(θ, ŝIVC)])

2
]
=

∑m̃
i=1 Wii(ŝIVC)fi(θ)

2. (7)

It is impossible to measure the in-cylinder pressure for
every possible ŝIVC. Therefore, GPR is used to create a
mapping from ŝIVC to ŵi(ŝIVC) and Wii(ŝIVC) using a
limited set of measurements.

Using GPR, the expected value and covariance matrix can
be computed as (Rasmussen and Williams, 2006):

ŵi(ŝIVC) = K(ŝIVC, ŝ
∗
IVC, ϕ)K(ŝ∗IVC, ŝ

∗
IVC, ϕ)

−1wi(ŝ
∗
IVC) (8)

and
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Wii(ŝIVC) = K(ŝIVC, ŝIVC, ϕ) −
K(ŝIVC, ŝ

∗
IVC, ϕ)K(ŝ∗IVC, ŝ

∗
IVC, ϕ)

−1KT(ŝIVC, ŝ
∗
IVC, ϕ),

(9)

where s∗IVC contains all fuelling settings and in-cylinder
conditions used during training.

For the kernel matrix K, we have chosen a squared expo-
nential kernel with Automatic Relevance Determination
(ARD), because wi(sIVC) is normally distributed. The
kernel matrix has entries

Kij = k(xi, xj) = σ2
f exp

(
− 1

2
(xi − xj)

T Θ−2 (xi − xj)
)
+ δijσn

with Θ a diagonal matrix of terms ϕl,i with i ∈
{1, 2, . . . , n}. The positive scalars ϕf , ϕl,i and ϕn are
hyperparameters grouped as ϕ, and δij is the Kronecker
delta. The hyperparameters are found by minimizing the
negative log marginal likelihood for each wi(sIVC) as

− log p(wi|ŝIVC, ϕ) = n
2 ln(2π) + 1

2 ln det(K(s∗
IVC, s∗

IVC, ϕ)) +

1
2wi(s

∗
IVC)TK−1(s∗

IVC, s∗
IVC, ϕ)wi(s

∗
IVC).

(10)
In this study, we have used the default implementation in
MATLAB’s Statistics and Machine Learning Toolbox to
determine the hyperparameters.

4. VALIDATION

In this section, the validation of the method in Section 3 is
performed using the RCCI engine described in Section 2.
First, a method to determining the required number of
PCs and the quality of relevant combustion parameters
is shown. Afterwards, a comparison is made between
measured and modeled pressure traces.

It is well known that Gaussian process regression performs
poorly at the boundary of the training data. Therefore,
the experiments that can be used for validation are chosen
such that

∥ŝIVC − µ (ŝIVC) ∥2 < ∥σ (ŝIVC) ∥2 (11)

holds, where µ (ŝIVC) and σ (ŝIVC) are the mean and stan-
dard deviation over each measurable in-cylinder conditions
at IVC. A random selecting of 30% of the experiments,
each containing 100 combustion cycles, that lie in this set
are used as validation data. These experiments are not
used during model training.

The Root Mean Square (RMS) between measured and
modelled average behaviour and cyclic variations in com-
bustion timing and performance measures at 45 different
operating points is shown in Figure 5 for an increasing
number of PCs. We selected to evaluate the accuracy of
CA50 as a measure for the accuracy of the underlying heat
release, IMEPg and Gross Indicated Efficiency (GIE) for
its importance during engine calibration. The IMEPg is
given by

IMEPg =

∫ 180◦

θ=−180◦
p(θ) dV (θ)

Vd

and GIE as

GIE =

∫ 180◦

θ=−180◦
p(θ) dV (θ)

mDILHVDI +mPFILHVPFI
,

where LHVDI and LHVPFI are the lower heating values
of the direct and port fuel injected fuels, respectively.
From these figures, the required number of PCs can be
determined as the point where the error does not decrease
when more PCs are added. The best average performance
for CA50 (Figure 5a) is achieved when 3 or more PCs are
used and 4 or more PCs when cyclic variation is taken into

Table 2. Computation time of pressure trace and related
variance using four PCs for a different number of measured

in-cylinder pressure traces

#Experiments m #Cycles M Computation time

100 100 0.36 s
100 20 0.18 s
50 100 0.09 s
50 20 0.06 s

account. This results in a RMS of 0.8◦ in average behaviour
and 0.2 ◦2 in cyclic variation. Figures 5b and 5c show the
error in IMEPg and GIE. They show that the performance
measures are less affected by the number of PCs and errors
in both average behaviour (0.1 bar for IMEPg and 0.1%

for GIE) and cyclic variations (0.03 bar2 for IMEPg and
0.001%2 for GIE) are small. This can be explained by the
fact that higher-order PCs add high frequency information
which does not alter the overall shape of the in-cylinder
pressure in much detail.

Figures 6a and 6b show the output of the GPR combustion
model with 4 PCs at two different operating points. In
each figure, all 100 measured cycles and the mean of
these cycles at a single operating point are shown. The
output of the model at this operating point includes the
expected in-cylinder pressure derived using (5) and (8),
and the 95%-confidence interval computed using (7) and
(9). We observe two kinds of behaviours depending on the
operating point: mean and cyclic variations are modelled
accurately (Figure 6a) or mean behaviour fit well but the
uncertainty bound is too small (Figure 6b). For the case
when mean and cyclic variations are modelled accurately
the operating point is far away from the border of the
space described by (11). For the case when the uncertainty
bound is too small the operating point lies on the edge of
the space described by (11).

The computation time to compute a pressure trace and
related variance increases when more measured in-cylinder
pressure traces are added or more PCs are used. Table
2 shows the computation time for different amounts of
experiments m and combustion cycles per experiment M .
These computations times are achieved on a laptop with
an Intel Core i7-9750H CPU running at 2.6GHz, it runs
Windows 10 with a MATLAB 2021b installation. It can
be seen that only the models with m = 50 meet the
computation time limitation of 0.1 s. Each added PC adds
additional computation complexity, since more ŵi(ŝIVC)
are required. In the original model with m = 105 and
M = 100, for every PC added 0.09 s of computation time
is added with the current amount of measured in-cylinder
pressure traces.

5. CONCLUSION

In this paper, we have presented a data-based CPBC-
oriented modelling method that is able to describe the
in-cylinder pressure trace during the combustion stroke
including a measure for cyclic variations. Similar to Pan
et al., we use a weighted sum of PCs. However, the required
weights are mapped using GPR instead of neural network.
This makes it possible to capture cyclic variations.

The modelled operating region is relatively small, we
will extend this region to cover the full operating space.
Including a smart method for collecting the data to meet
computation time limitation. We will also provide a more
thorough validation using real engine data in future work.
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(a) CA50 (b) IMEPg (c) GIE

Figure 5. Validation of the average behaviour (blue) and cyclic variation (red) in combustion timing (CA50) and
performance measures (IMEPg and GIE) at 45 different operating points

(a) Accurate fit

(b) Uncertainty bound too small

Figure 6. Measured and modelled in-cylinder pressure
where m̃ = 4 at two different in-cylinder conditions
at IVC and fuel setting

Furthermore, to capture the full engine capabilities, an air-
path model (e.g., based on a mean-value engine model)
should be included.

We will also show how the presented framework can be
used in the development of advanced feedback control
methods. These methods can include information about
the full in-cylinder pressure and therefore maximize effi-
ciency. Furthermore, the information about cyclic varia-
tions can be used to create faster controllers while still
being robust.

With our framework, we are able to speed up the de-
velopment of advanced feedback controllers. Since, a new
static mapping or dynamic model is not required if a new
combustion measure (e.g., IMEPg or CAx) needs to be
added.
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