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Abstract: This paper presents an improved wheel odometry model calibration architecture to
increase the accuracy and robustness of the motion estimation of vehicles. Wheel odometry is a
robust and cost-effective method, but the accuracy of the estimation is limited by the knowledge
of the parameter values. These can be estimated from GNSS and IMU measurements, but the
calibration of the nonlinear odometry model in the presence of noise remains an open problem.
Due to the nonlinearity, even with Gaussian-type measurement noise on the input wheel speeds,
the calibration will be certainly biased. This paper presents an algorithm that takes advantage of
the assumption that several measurements are available in a self-driving vehicle, and nowadays
the increased computing capacity of computers allows more complex algorithms to be developed.
With the proposed architecture, the bias of the model calibration can be reduced significantly
through the application of the compensated input signals. The performance of the developed
algorithm is demonstrated with detailed validation and test with a real vehicle.
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1. INTRODUCTION

State estimation plays a critical role in self-driving soft-
ware because trajectory planning and motion control are
based on its results. The aim is to determine the motion
signals, such as velocities and pose (position and orienta-
tion) as accurately as possible. Similarly, robustness and
cost-efficiency are also important in the automotive indus-
try, thus generally cost-effective automotive-grade types
of sensors are applied. The disadvantages of the GNSS
(Global Navigation Satellite System), IMU (Inertial Mea-
surement Unit), or vision-based methods can be mitigated
with the integration of wheel encoder measurements (Funk
et al. (2017); Thrun and et al. (2006)). However, the model
suffers from parameter uncertainty. Therefore, this paper
focuses on the calibration of the odometry model, which
is equivalent to the parameter identification of a nonlin-
ear dynamic system. Generally, this type of optimization
has not been solved yet, see e.g. (Schoukens and Ljung
(2019)), and the problem is more difficult when the model
calibration has to be performed with noisy signals.

The calibration problem of the wheel odometry model
appears in the navigation task of small mobile robots first
and has also become under investigation with the appear-
ance of autonomous functions in the automotive industry.
The related works operate with two different estimation
methods. In the one, the parameter estimation is handled
as a state filtering with the Augmented Kalman-filter
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(Martinelli and Siegwart (2006); Brunker et al. (2017)).
The process assumes zero dynamics for the parameters,
thus it is a simple way to identify unknown values, but the
convergence and observability are questionable (Martinelli
and Siegwart (2006); Censi et al. (2013)), and a final stable
value can not be obtained. The other method is to estimate
the parameters as a regression problem, which due to the
nonlinear model results in non-convex optimization. Its
general solution is difficult, the methods such as (Censi
et al. (2013); Seegmiller et al. (2013)) manage the non-
linear problem with double linearization or separation,
however these only work with a simplified odometry model
and almost perfect reference orientation measurements. In
the case of a real-sized self-driving vehicle, these can not
be presumed (Fazekas et al. (2020)).

When unknown parameters of a nonlinear model are
identified, the key factor is the handling of the appearing
noises. Linear system identification is a well-explored area
(Ljung (1987)), but due to nonlinearity, there are new
issues that do not appear at all in the linear case. Since
the dynamics from the inputs to the outputs is not
linear, the impact of the input noise can not be modeled
with Gaussian distribution (which assumption is generally
applied in the methods such as Kalman-filtering or least
squares regression) on the measured output (Schoukens
and Ljung (2019)). Thus, the model calibration will be
biased certainly, even in the case of white noises on the
measured input signals.

This distortion effect can be handled in two ways. The one
is to apply specific requirements, such as unbiased estima-
tion of the initial pose (Antonelli and et al. (2005)), mea-
surement with expensive sensors (Lemmer et al. (2010)),
or special pre-defined measurement scenarios (Jung et al.
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(2016)), etc. Only a few papers use the other way, which is
to develop a specific algorithm that deals with the noises.
In (Maye et al. (2016)), an undesirable behavior of the tra-
ditional observability analysis is examined. The proposed
algorithm detects the case when due to the noises, the
parameters seem to be observable, but in fact, they are
not.

Our work addresses a different aspect of the distortion
effect of the noises. No specific requirement is applied
since a self-driving vehicle should re-calibrate itself from
the signals of onboard sensors measured while general
driving. For the parameter identification, the input wheel
speed signals are also measured in addition to the output
pose values. But due to the noise on these speed signals,
input compensation, in other words, estimation of noise-
free wheel speed signals is required. The main contribution
is that the proposed calibration architecture includes input
compensation besides the traditional parameter identifica-
tion. The method operates with the Gauss-Newton non-
linear least squares technique and an optimal control task.
The efficiency of the proposed algorithm is validated with
experimental tests of a real-sized vehicle, which demon-
strates that the mentioned issues of the noises are elimi-
nated, and unbiased model calibration can be reached.

The remainder of the paper is organized as follows. In
Section 2, the applied odometry model including dynamic
wheel model is presented. The methods for nonlinear pa-
rameter identification, and the proposed improved calibra-
tion architecture with input compensation can be found in
Section 3 and 4, respectively. The measurement scenarios
used for the calibration are presented in Section 5. The
validity of our approach is demonstrated via vehicle test
experiments in Section 6, and finally, the paper is con-
cluded in Section 7.

2. VEHICLE MODEL AND NOTATION

The navigation with wheel odometry is based on a model,
where the state vector xt contains the pose, the longitudi-
nal and lateral positions of the center of gravity px,t, py,t,
and the ψt orientation of the vehicle.

Fig. 1: Odometry model

ay: lateral acceleration

(measured)

β: sideslip angle

(filtered)

nrl/rr: wheel rotation

(measured)

The change of the pose is based on the longitudinal vt and
angular ωt velocities, thus the planar motion of the vehicle
in t discrete time steps is calculated as,[

px,t+1

py,t+1

ψt+1

]
=

[
px,t + vt · ts · cos(ψt + ωt

2 + βt)
py,t + vt · ts · sin(ψt + ωt

2 + βt)
ψt + ωt · ts

]
, (1)

where βt is the sideslip angle filtered from the IMU
and GNSS measurements. The velocities are computed
utilizing the wheel rotations,

vt = (nrl,t · crl,t + nrr,t · crr,t)/2, (2a)

ωt = (nrr,t · crr,t − nrl,t · crl,t)/tr, (2b)

where ts = 0.025 s is the sampling time, crl,t, crr,t are
the actual wheel circumferences, and tr is the rear track
width. The slight change of the wheel radius due to the
effect of vertical dynamic is generally neglected, because
the odometry-based localization is widely used in low-
speed circumstances, e.g. automated parking. However,
our method is developed for general driving, where the
dynamics is significant (Fazekas et al. (2020)). Therefore,
the slight change due to the vertical load transfer is
considered,

crl,t = ce + cd/2 + d · ay,t, (3a)

crr,t = ce − cd/2− d · ay,t, (3b)

where the ce is the effective wheel circumference, cd is the
difference between the effective values, ay,t is the lateral
acceleration measured by the IMU, and the dynamic
component d takes into account the effect of vertical
dynamics.

In the calibration process, every state variable is measured,
thus the system model is,

xt+1 = f(xt, ut, θ), xt = [px,t, py,t, ψt]
T , yt = xt,

(4a)

ut = [nrl,t, nrr,t, βt, ay,t]
T , θ = [ce, cd, tr, d], (4b)

where f(·) contains (1), and θ is the parameter vector.

The nominal values of ce and tr can be found in the
vehicle datasheet, but with these values, the position
error of the model is already in the range of 10 m after
a few hundred meters. The necessity of calibration is
demonstrated with detailed motivation examples in our
previous paper (Fazekas et al. (2021)), where a simplified
calibration is presented.

Since in the paper a lot of signals are utilized with
various forms, the following notations are introduced. The
’tilde’ means the measured versions, e.g. ñrl and ñrr are
measured with the wheel encoders. The signals of GNSS
and IMU are filtered to form ỹ, which will be named as
measured pose. The ’hat’ refers to estimated or computed
versions, such as n̂rl, n̂rr estimated wheel rotations, ŷ is
the predicted output in the identification process, while

x̂ is the computed nominal trajectory, and θ̂ utilized as
the estimated parameter vector. The measured lateral
acceleration and filtered sideslip are utilized in the same
version throughout the calibration, thus these are noted
as ay and β everywhere. The nrl and nrr wheel rotations
will be mentioned several times with one symbol nrl/rr.

3. NONLINEAR PARAMETER IDENTIFICATION

3.1 Parameter estimation of nonlinear dynamic models
with Gauss-Newton method

Generally, the parameter estimation is formulated as a
least squares (LS) optimization problem, to minimize the
error of the ŷk(θ) predictor of the model from the ỹk output
measurements, such as

θ̂opt = arg min
θ

VK(θ) = arg min
θ

K∑
k=1

||ỹk − ŷk(θ)||2. (5)
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When the model is nonlinear in θ, the optimization
can only be solved with numerical search (Tangirala
(2015)). We apply the Gauss-Newton (G-N) method that
solves the nonlinear least squares problem with Taylor-
approximation in the following way,

ŷk(θ) ≈ ŷk(θ̂i−1) +
∂ŷk(θ)

∂θ

∣∣∣∣
θ̂i−1︸ ︷︷ ︸

jk

(θ̂ − θ̂i−1)︸ ︷︷ ︸
∆̂θ

, (6)

where due to the dynamic behavior of the predictor, the
jk jacobians are computed recursively. This results in a
locally linear LS problem, such as

∆̂θopt = arg min
∆θ

K∑
k=1

||(ỹk − ŷk(θ̂i−1))− jk ∆̂θ||2, (7)

which can be solved with the LS solution in an iterative
way,

θ̂i = θ̂i−1 + (JT W J)−1JT W R, (8)

where the J := J(θ̂i−1), R := Ỹ − Ŷ (θ̂i−1) matrices are

formed from the jk and (ỹk− ŷk(θ̂i−1) values, respectively.

A weight matrix W is also added to the basic solution.
Since the model is linearized in the previous parameters,

an initial guess for θ is required, and when in last term (Ỹ−
Ŷ (θ̂i−1)) the integrated system model is computed with
the previous parameters the states have to be initialized
at the beginning of the estimation window.

In this identification method, the fundamental issues ap-
pear due to the noises on the ỹk output and ũk input
measurement signals. The noise on the ỹk is less significant
because it enters after the nonlinearity. The noise on the
measured input must not be neglected, since its impact
on the output can not be modeled with the Gaussian
framework (Schoukens and Ljung (2019)). Because the
methods like least squares or Kalman-filter apply this
framework, the estimation would be biased. Therefore,
our paper focuses on the compensation of input noise to
guarantee unbiased model calibration.

3.2 Estimation in batch mode

The effect of the mentioned issues can be mitigated, if more
measurement segments with length K are applied at once.
In this batch mode, the matrices in the G-N method of
the different segments are stacked into the following huge
matrices,

JB(θ̂B,i−1) =

J1(θ̂B,i−1)
...

JN (θ̂B,i−1)

 , RB =

 Ỹ1 − Ŷ1(θ̂B,i−1)
...

ỸN − ŶN (θ̂B,i−1)

 ,
(9)

where N denotes the batch size. The parameters can be
identified in the same iterative way of (8) with the batch
matrices. To avoid confusion, the G-N estimation that is
performed on one individual segment (Section 3.1), will be
noted as pure G-N method, while this as batch G-N.

In this batch case, the model fitting is performed to every
segment simultaneously, which reduces the effect of the
noises. The method is similar to a cross-validation tech-
nique inside the identification loop. However, it is impor-
tant to note that the distortion effect of the input noise

is only reduced but not eliminated, thus the calibration
remains biased.

4. CALIBRATION WITH INPUT COMPENSATION

4.1 Wheel rotation compensation with optimal control

In this paper, a new method is proposed to deal with the
input noises to improve the model calibration. The main
inputs of the odometry model are the wheel rotations,
thus we focus on the compensation of the nrl/rr wheel
rotation signals only. The quantities are measured with the
equipped encoder to the axle, but the signals are corrupted
by slip and other noises. Since the errors do not pass
through the system dynamics, these can not be determined
with a disturbance estimator.

The noises of the measured ñrl/rr rotations can be com-
pensated, if one form an estimation of the signals to de-
termine the noise-free rotations. The idea is motivated by
the well-known model predictive control strategy, where
the optimal input sequence for the system to follow the
reference trajectory can be determined by numerical opti-
mization. Due to the nonlinearity of the odometry model, a
Jacobian linearization of the model around a x̂k calculated
nominal trajectory is performed,

Âk =
∂f(·)
∂x

∣∣∣∣
x̂k

, B̂k =
∂f(·)
∂u

∣∣∣∣
ũk

, x̂k+1 = f(x̂k, ũk, θ),

(10a)

ĝk = f(x̂k−1, ũk−1, θ)− (Âk−1x̂k−1 + B̂k−1ũk−1), (10b)

and the following optimization task is formed,

min
nrl,nrr

K∑
k=1

||ỹk − yk(θ)||2Q + ||∆nrl/rr,k||2R → n̂rl/rr,k

s.t. x0 = ỹ0

xk = Âkxk−1 + B̂kuk−1 + ĝk
ỹk − [5, 5, 0.5] ≤ xk ≤ ỹk + [5, 5, 0.5]

ñrl/rr,k · 0.95 ≤ nrl/rr,k ≤ ñrl/rr,k · 1.05
(11)

which can be solved with quadratic programming (QP)
techniques. The nominal trajectory x̂k=1..K is computed
with the model (4) utilizing the measured ñrl/rr,k wheel
rotations. The matrices Q, and R are positive definite
weighting matrices of the trajectory tracking and the input
changes, respectively. The initial state x0 is initialized
with the corresponding ỹk measured pose. The applied QP
solver of Mathworks can handle lower and upper bounds
(Mathworks (2021)). The states are bounded around the
ỹk measured values with limits of [5,5,0.5]. Since the
estimated rotation signals are measured as well, a ±5%
limit around the ñrl/rr,k measured wheel rotations are
applied. Utilizing these bounds the computation time is
dramatically decreased, only a few iterations are enough
for the convergence.

4.2 Calibration architecture

In the proposed calibration architecture, the batch G-N
method (Section 3.2) is applied to identify the parameters,
and the optimal control task (Section 4.1) is used to
estimate the noise-free wheel rotation signals to improve
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the calibration accuracy. These processes are integrated
into a 3 steps calibration method, which can be found in
detail in Figure 2. The process begins at the start, with
preliminary filterings to calculate the required signals for
the model calibration (Section 5).

Step 1: The novel idea in this paper is the input compen-
sation, but the optimal control task (11) supposes known
θ parameter whose utilized value significantly affects the
performance of the input estimation. To generate appro-
priate parameters for the nrl/rr estimations, initial G-N
identifications are performed in batch mode with N = 10

segments resulting θ̂B,I values.

Step 2: These are utilized as fixed parameters in the
wheel rotation estimations. The nrl/rr rotation inputs of
every segment in the batch are compensated one by one.

Since when the θ̂B,I values are estimated in Step 1 the
raw measured ñrl/rr rotations are used, the identified
values are not accurate, and consequently neither are the
estimated wheel rotations. Therefore, the estimated n̂rl/rr
inputs of a segment are calculated as a mean of 5 optimal

control estimations utilizing different θ̂B,I parameters.

Step 3: Finally, the vehicle parameters are calibrated in
batch mode, but now in every segment, the estimated
n̂rl/rr inputs are utilized. Since the wheel rotation signals
are compensated, N = 5 batch size is sufficient to obtain

proper θ̂B,F identified values.

Fig. 2. Architecture of the proposed model calibration.
Notations are: thick black arrow - process; blue ar-
row: addition signals to the calibration such as po-
sition, orientation, sideslip, acceleration; red arrow:
estimated parameters and signals.

4.3 Tuning of the method

In the Gauss-Newton parameter identification method, the
W is introduced to equalize the lower value of orientation
error in radians, than the position errors in meter. The
experimental tuning results in the following setting,

w = [wpx , wpy , wψ] = [1, 1, 402],

W = [w, ..., w]1×3K , WB = [W, ...,W ]1×3KN ,

to obtain proper vehicle model calibration. Due to the
linearization in the G-N method, initial guess for the
parameters are necessary. The nominal values (ce,nom =
2 m tr,nom = 1.6 m) from the vehicle’s datasheet are
applied, and the rests are set to zero.

θ̂B,0 = θnom = [2, 0, 1.6, 0] (13)

The iteration in the G-N method runs until the R residual
is decreasing, or the maximum iteration imax = 5 is
reached.

Since in our optimal control problem the estimated inputs
are also measured and close to the true ones, a relatively
high prediction horizon K = 650 (15 s in time with
150 m average path length) can be applied. Despite, the
computation is not high, imax = 5 iterations are sufficient
due to the chosen bounds.

The main tuning parameters of the optimal control task
are the Q and R weighting matrices, where only the
diagonal elements are not zeros. Ensuring the trajectory
tracking without high-frequency changes of the estimated
inputs, the weights are chosen, such as

Q = diag([1, 1, 10]), R = diag([1000, 1000]). (14)

5. TEST VEHICLE AND MEASUREMENTS

The test vehicle is a Nissan Leaf electric car which is
equipped with automotive-grade GNSS, compass, and
IMU sensors, and from the vehicle CAN bus the wheel
encoder signals are also saved. The sampling frequency is
40 Hz. The test track is a 24 km long route in suburb and
city driving with normal driving conditions, the path can
be found in Figure 3. The track contains various bends,
two roundabouts, and lots of crossroads.

Fig. 3. Path of the used measurements scenario

The signals of the GNSS, compass, and IMU sensor are
utilized for the model calibration. The pose can be mea-
sured directly with the first two, although these signals are
assumed to be noisy but unbiased. In contrast, the pose
computation from the acceleration and angular velocity
measurements with the IMU is generally biased, but the
noise is lower. The filtering problem is well-explored, the
implemented method is similar to Caron et al. (2006)
to obtain reference measurements (ỹk) for the estimation
task. The sideslip is also estimated with an IMU-based
method (Bevly et al. (2006)) in the bends, which are de-
tected using the vehicle trajectory (Fazekas et al. (2021)).

The estimation is performed on smaller measurement
parts, therefore, the 24 km long route is divided into
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segments with K = 650 measurement points and with step
length 2.5 s. This results in 1025 segments with 150 m
average lengths. Since the cd, tr and d parameters can be
only observed properly with the yaw rate equations (2b),
the 504 segments with higher absolute angular velocity
than 0.15 rad/s are selected for the parameter estimation.

6. EXPERIMENTAL RESULTS

6.1 Validation error and reachable minimum

The true value of the θ = [ce, cd, tr, d] parameters are
unknown, thus the model calibration can not be evaluated
with the parameter estimation errors. Since the main goal
of the calibration is to obtain a model which improves the
motion estimation of a vehicle, the proposed method is
validated with the position error of the calibrated models.

In order to avoid overfitting, the segments of the measured
path are regenerated with different initial points and with
300 m average length. Furthermore, in the validation
process, all of the parts are applied regardless of the
angular velocity is lower than the limit. The validation
error is the position one which is calculated such as,

Ep,s =

K∑
k=1

√
(p̃x,k − px,k(θ̂))2 + (p̃y,k − py,k(θ̂))2, (15a)

uk = [ñrl,k, ñrr,k, βk, ay,k], xk=0(θ̂) = ỹk=0, (15b)

and the Ep average of these segment errors is applied as a
validation error to evaluate the method.

Take into account that the minimum validation error is
not zero, because the states of the odometry model (4) at
the beginning of the segment are initialized with the filter
pose values, and the measured ñrl/rr rotations are utilized
as inputs. The minimum error is 2.40 m determined with a
genetic algorithm applying all of the validation segments.

6.2 Prior model calibrations (Step 1), examined batch

The proposed method is necessary because the batch
version of the G-N method can not guarantee the bias-free
parameter estimation. To illustrate this, 50 independent
batches are formulated from the 504 selected segments
with N = 10 batch size. The resulted models are validated,
the Ep average errors can be found in Figure 4. The sorted

Fig. 4. Validation errors of the batch G-N estimations

error figure illustrates that it is possible to calibrate the
odometry model with the batch G-N method since the
best 1/3 of the calibrated models has a lower error than

2.5 m. On the other hand, the mean error of the worst
1/3 model is 3.25 m, even though 10 different segments
are applied at once for the estimation. This demonstrates
the necessity of noise compensation. The performance of
the proposed method is illustrated in detail with the worst
batch calibration (examined batch with id 34), to show the
high impact of the wheel rotation noise compensation.

The input estimation in Step 2 could be accurate only if
proper vehicle parameters are utilized in the model. In the
first step of the calibration, the same G-N identification

is performed, thus the 5 θ̂B,I vehicle parameter settings
are chosen from the previously mentioned calibration. The
models are selected with equal steps from the sorted list
to ensure a realistic test of the proposed model (Figure 4).

The identified parameters of the selected θ̂B,I settings, and
the ones of the examined batch can be found in Figure 5.
The standard deviations of the batch G-N calibrations are

Fig. 5. Identified parameters of the 5 θ̂B,I G-N estimations
(Step 1) and the examined batch

relatively low σθI = [1.36, 0.20, 14.53, 0.27] mm. However,
one has seen in Figure 4 that the validation error of these
models are in a range of 2.45 − 3.90 m with standard
deviation of 0.4 m. Thus, the nonlinear wheel odometry
model is highly sensitive to the parameters, e.g. 0.5 mm
in the cd circumference difference could result in 0.8 m
higher validation error.

6.3 Input compensation on a given segment

First, the input compensation algorithm (Step 2) for
segment 7 of the examined batch is illustrated. The input
compensation algorithm (Section 4.1) is performed with

the 5 θ̂B,I parameter setting. The mean of these are the
n̂rl and n̂rr estimated wheel rotation signals (compensated
inputs), which are illustrated in Figure 6 together with the
measured ones. The estimated rotations are close to the
measured ones, the main difference is the smoothness of
the estimated signals, the absolute average of the relative
error is below 1.2%.

Due to the nonlinear model, the impact of this small devi-
ation should be analyzed. The pose errors of the odometry
model (4) with the measured ñrl/rr, and compensated
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Fig. 6. The measured and estimated input signals

n̂rl/rr inputs are [0.83m, 0.94
◦] and [0.04m, 0.15◦], respec-

tively, which demonstrates that only a little noise in the
wheel rotations could result in a significant deterministic
error.

Since the main goal is the model calibration, the important
question is the impact on the parameter identification.
On this segment, estimations with the pure G-N method
(Section 3.1) are performed utilizing the measured and
estimated wheel rotations. The identified parameters and
their validation errors can be found in the first two rows
of Table 1. The high deviation of the identified parameters

Case ce cd tr d Ep

Segment 7 with ñrl/rr 1.947 -0.70 1.654 -2.87 10.08

Segment 7 with n̂rl/rr 1.950 -2.08 1.527 0.73 2.51

Batch with ñrl/rr 1.950 -2.48 1.501 1.25 3.86

Batch with n̂rl/rr 1.950 -2.07 1.527 0.76 2.48

Table 1: Identified parameters with the measured (ñrl/rr),
and estimated (n̂rl/rr) wheel rotations

is the consequence of the sensitivity to the input noise.
Even though the estimated parameters with the raw
measured ñrl/rr inputs are optimal in this segment, the
10 m validation error shows that this is a totally wrong
calibration. However, after the inputs are compensated,
the odometry model can be calibrated properly with this
single segment alone, which is illustrated with the 2.51 m
validation error.

6.4 Calibration in batch mode with compensated inputs

In the previous section, the input estimation of one seg-
ment of the examined batch is presented, now the focus
is on the model calibration with the whole batch. In Step
2, for every segment, the input estimation (Section 4.1) is

performed with the 5 selected θ̂B,I vehicle parameters to
form the n̂rl/rr compensated wheel rotation signals.

For the illustration of the effectiveness of model calibra-
tion, the parameter estimation is performed in 4 cases, for
every segment separately with the pure G-N method (Sec-
tion 3.1), and for all at once in the batch mode (Section
3.2), and both with the measured ñrl/rr and compensated
n̂rl/rr inputs. The identified parameters can be found in
the plots of Figure 7.

Fig. 7. Identified parameters with the ñrl/rr raw measured
and the n̂rl/rr estimated wheel rotation signals. The

final θ̂B,F calibration of the proposed method is the
batch GN comp. value.

The examined batch (id 34) is the worst of the 50 initial
calibration which is illustrated well with the pure G-N
calibrations when the measured inputs are utilized (left
column of Figure 7). The estimated parameters differ from
each other significantly, and in many cases, the values are
incorrect, e.g. higher than 1.7 m for tr track width or
negative d dynamic constant. The batch formulation of the
G-N method reduces the distortion effects, the identified
parameters are not incorrect (third row of Table 1). How-
ever, the 3.86 m validation error (Figure 4) demonstrates
that the bias of the calibration is still high.

When the compensated inputs are utilized in the calibra-
tions (blue in Figure 7), the results are improved substan-
tially. There are only two segments (3,4) in the case when
the calibration is performed on the segments separately
when the estimated parameters differ from the others
significantly, but these are not incorrect values either.

The effectiveness of the input compensation is illustrated
in Figure 8, where the validation errors of the pure and
batch G-N estimations are presented. The outstanding
result is that (regardless of the two mentioned segments),
when the n̂rl/rr compensated inputs are utilized, the
accuracy of model calibrations in the case of separate
segments is far higher than the case of batch calibration
with 10 segments all at once with the raw measured inputs.
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Fig. 8. Ep average position error of the calibrated models

Furthermore, in the batch case with compensated inputs

(θ̂B,F ), the validation error is only 2.48 m which is only
8 cm higher than the reachable minimum error. In this
paper, only the calibration of the examined batch 34 is
shown in detail (since this is the worst of the initial
calibrations), but the results are the same for the other
batches as well.

6.5 Analysis of the estimation accuracy

The uncalibrated nominal setting from the vehicle’s
datasheet (θnom = [1.98, 0, 1.55, 0]T ) is also tested. Its
validation error is 11.09 m illustrating the requirement of
the calibration. Taking into account that the minimum
validation error is 2.40 m, thus the estimation accuracy
with the proposed method compared to the case when the
uncompensated inputs are utilized (3.86 m) is 18 times
lower in a relative term. The 2.48 m average position error
on 300 m long segments using only the wheel rotations
is lower than 1% which corresponds to a highly accurate
odometry-based localization.

7. CONCLUSION

In this paper, a complex calibration algorithm with a
novel input compensation method was presented to the
nonlinear wheel odometry model. The vehicle parameters
are identified with the Gauss-Newton method, while the
wheel rotation inputs are estimated as an optimal control
task, and the methods are integrated into a 3 steps
architecture. The main contribution is that an almost
unbiased calibration can be obtained, even from a few
150 m long segments, if the wheel rotation input signals
are compensated with the proposed algorithm.

In the future, we would like to improve the proposed
method with the reduction of computation time to develop
an online version of the method. The estimation of the
segments can be done in parallel running, furthermore, we
would like to examine in detail the relation between the
utilized θ̂B,I parameter values and the estimated input, to
reduce the number of estimates required for the formation
of the compensated input signals.
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