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Abstract: This paper presents the real-time optimization of the crankshaft motion in a
hybridized opposed piston (OP) engine using an iterative learning-based trajectory optimization
scheme. The powertrain is oriented in a series hybrid design with each crankshaft directly coupled
to electric motors, eliminating the conventional geartrain linking the two crankshafts along with
the associated friction and weight. In this way, the electric motors can directly extract the
work generated by the engine and regulate the crankshaft dynamics, introducing the capability
to dynamically vary compression ratio, combustion volume, and scavenging dynamics on an
inter-cycle basis. This control freedom increases the system’s maximum potential efficiency, yet
requires highly optimized intra-cycle crankshaft motion profiles to realize the improved work
extraction efficiency of the dual motor-controlled OP engine. Leveraging the repetitive nature
of the internal combustion engine, an iterative trajectory optimization (ITO) algorithm is used
to define the optimal crankshaft motion profile in real-time for steady state operation. We
demonstrate experimentally the rapid convergence and near optimal crankshaft motion profiles
for the ITO strategy as well as its proficiency under both motored and fired cycle operation.

Keywords: Iterative Learning Control, Real-time Control, Convex Optimization, Trajectory
and Path Planning, Parametric Optimization

1. INTRODUCTION

Hybrid electric powertrains improve vehicle efficiency
through the flexibility provided by multiple onboard en-
ergy sources (Enang and Bannister (2017)). Power sup-
plied from a secondary source enables more efficient oper-
ation with a downsized internal combustion engine. How-
ever, the decreased cylinder volume of smaller engines
increases heat transfer and yields lower peak efficiencies
for the same mean effective pressure (Payri et al. (2014)).
Therefore, the opposed piston (OP) engine has been pro-
posed as an alternative internal combustion (IC) engine
design to maximize the potential efficiency of hybrid
powertrains. (Young et al. (2021); Serrano et al. (2021);
Drallmeier et al. (2021b)). Along with several thermody-
namic benefits (Herold et al. (2011); Willcox et al. (2012);
Pirault (2010)), the OP engine is inherently balanced in
nature due to the two crankshafts operating opposite each
other, allowing for downsizing though reduction in cylinder
count rather than individual cylinder volume. This lends
itself well to lower power, downsized, range extender or
hybrid powertrain applications, without incurring the in-
creased heat transfer losses of a conventional, four stroke
internal combustion engine.

⋆ This work was supported by the Automotive Research Center, U.S.
Army DEVCOM GVSC. DISTRIBUTION A. Approved for public
release; distribution unlimited. OPSEC # 6585

In an OP engine, two pistons face each other in a single
cylinder, combining the stroke of both pistons while elimi-
nating the cylinder head of a conventional IC engine. The
OP engine operates on a uniflow scavenged two stroke cy-
cle where the pistons actuate the intake and exhaust ports
as shown in Fig. 1. A geartrain conventionally links the two
crankshafts, coupling the motion of the pistons and ensur-
ing a fixed exhaust crankshaft lead (ECL) which defines
the relative phasing of the two crankshafts. Previous work
by the authors highlight the potential for a dual motor-
controlled OP engine (Drallmeier et al. (2021b)), wherein
electric motors are coupled directly to each crankshaft. Not
only does this configuration eliminate geartrain friction
losses, but the electric motors can regulate the angular
velocity of the crankshafts. With independent control of
the piston trajectories and ECL, the capability to vary
compression ratio, combustion volume, and scavenging
dynamics is introduced on an inter-cycle basis. As shown in
work from Young et al. (2021) as well as Naik et al. (2013),
the optimal ECL for an OP engine varies depending the
operational setpoint.

However, the dual-motor system efficiency is highly depen-
dent on the operation and required control torque from the
electric motors. Any gains in efficiency from removing the
geartrain can be lost to poor motor performance. Results
from Drallmeier et al. (2021b) show a near constant motor
torque profile maximizes the work extraction efficiency of
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Fig. 1. Control architecture of the hybridized OP engine. Solid lines represent mechanical connections, dotted lines
represent electrical connections, and dashed lines represent control or measurement signals. The trajectory
optimization algorithm provides the basis parameters Γ defining the tracking reference to the lower level controls.

this system. Yet, the necessity to maintain the relative po-
sitioning between the two pistons requires control over the
instantaneous crankshaft position and prohibits the use of
constant intra-cycle torque control to maintain the desired
engine speed. The challenge then is not in controlling the
crankshaft to a desired position trajectory. Rather, it is
defining the optimal position and velocity trajectory to
control to. The system has shown significant sensitivity
to model uncertainty, limiting the effectiveness of offline
optimization (Drallmeier et al. (2021a)). The repetitive
motion of the reciprocating IC engine can be leveraged to
implement a learning-based scheme for iterative trajectory
optimization (ITO) presented by the authors in Drallmeier
et al. (2022). In this way, the information rich signals
from the previous engine cycle can be used to improve
the tracking reference of the next cycle based on the
performance criteria. Further, the use of the previous cycle
data reduces the reliance of the optimization process on
the fidelity of the system model while still maintaining
the required constraint on the relative phasing of the two
crankshafts.

In the following sections, the experimental test setup and
control system along with the relevant system dynamics
are described. Then, the trajectory optimization problem
is introduced by first briefly describing the ITO process
followed by the parameterized trajectory variables and
associated cost function for the hybrid OP powertrain.
Finally, results showing the effectiveness of the learning
scheme during motored conditions as well as for fired
conditions are presented. Not only does the ITO method
reduce calibration time, eliminating the need for a table of
motion profiles to be calculated offline for different speed
and load setpoints, but it also enables downsizing of the
electric motors used for controlling the crankshaft motion,
reducing cost and weight while increasing motor efficiency.

2. EXPERIMENTAL SETUP

A schematic of the main portions of the physical and
control system used for this study is provided in Fig. 1.
The OP engine was provided by Achates Power Inc. and
has the following characteristics.

• Cylinder Count: 1
• Displacement: 1640 [cc]

• Stroke: 108.0 [mm]
• Bore: 98.4 [mm]
• Inlet Port Closing: -129.5 [deg]
• Exhaust Port Opening: 121 [deg]

A gasoline compression ignition strategy using pump gaso-
line with an 87 anti-knock index was employed for this
testing with a split injection strategy consisting of a pilot
injection 38 degrees advanced from the main injection.
Each crankshaft of the OP engine was coupled to an
Avid AF240 axial flux surface mount permanent mag-
net (SMPM) motor/generator with Semikron SKiiP 1814
GB17E4-3DUW V2 switching units for the inverter. The
general operating principle between the OP engine and
the electric motors is governed by a torque balance across
the mechanical coupling shown in Fig. 1. Neglecting any
deflection present in these couplers, the relation for each
crankshaft can be expressed as

Teng(k)− Tm(k) = Iθ̈(k) (1)

where Teng and Tm denote the torque generated by the
engine and the torque of the motor, respectively. The
inertia of the rotating mass is I, and θ̈ denotes the actual
rotational acceleration. The motor torque is considered
the control input to the system and provides a means
of regulating the position, θ, of each engine crankshaft.
The desired motor torque required to track a crankshaft
position and velocity reference is developed by the position
regulator, detailed by Drallmeier et al. (2021a) using
measured values of crankshaft position and velocity, as
well as cylinder pressure. A field-oriented control scheme
is used to regulate the true motor torque (Yusivar et al.
(2014)). Both of these controllers, as well as the trajectory
optimization scheme outlined in detail in the following
sections, are implemented on a dSPACE Microlabbox.

3. TRAJECTORY OPTIMIZATION PROBLEM

Iterative learning control (ILC) is a well documented
strategy to improve the performance of repetitive sys-
tems (Bristow et al. (2006)). Generally, ILC is used in
applications to reduce the tracking error where the ideal
tracking reference is known a-priori. However, this work,
similar to Cobb et al. (2020), presents a unique view of
a repetitive system in which it is of interest to improve
an economic performance index through manipulation of
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the tracking reference rather than reducing the tracking
error through manipulation of the control input. The ITO
methodology detailed in Drallmeier et al. (2022) is used
here as it enables constraints to be integrated into the
optimization process. For the case of a hybrid opposed
piston engine, this is used to maintain the desired phasing
between crankshafts as there is no longer a geartrain to
couple the piston motion. This trajectory optimization
process is formulated as the quadratic programming (QP)
problem

min
Γ

J =
1

2
ΓT
j ΩjΓj +ΨjΓj + cj

s.t. AΓj − b = 0
(2)

where the matrix A and vector b are used to define the op-
timization constraints. The next cycle tracking reference,
rj+1(k), which is parameterized using the Fourier series,
is updated as

rj+1(k) = h(k)TΓj . (3)
with the subscript j denoting the cycle index and k denot-
ing the time index. The optimization variable Γj is a vector
containing the scalar coefficients for the Fourier series,
and the vector h(k) contains the trigonometric functions
defining the Fourier series. The weighting matrices Ωj and
Ψj are defined as

Ωj = 2

N∑
k=1

βq0,j(k)h(k)h(k)
T + βq1,j(k)ḣ(k)ḣ(k)

T+

...+βqp,j(k)h
(p)(k)h(p)(k)T

(4)

Ψj =

N∑
k=1

βl0,j(k)h(k)
T + βl1,j(k)ḣ(k)

T+

...+ βlp,j(k)h
(p)(k)T

(5)

where p denotes higher order derivatives of h(k). The
value N denotes the number of samples in a period of the
repetitive process, which in this case is one revolution of
the crankshafts as the OP engine operates on a two stroke
cycle. The β variables used to define Ωj and Ψj are derived
from the application specific cost function to be minimized.
To utilize this ITO method, both (4) and (5) are summed
in the time domain over a single learning cycle. Then (2) is
solved once after each learning cycle using the results of (4)
and (5). As (2) is an equality constrained QP problem, it is
solved as a linear system of equations (Nocedal and Wright
(2006)). The following sections detail the optimization
problem derivation necessary to implement this online
trajectory optimization and provide explicit definitions for
h(k) and all β values. Note, however, the derivation of
this ITO problem will be completed with respect to a
single crankshaft as the problem objective and dynamics
for each crankshaft are identical. Then, as the ECL must
be constrained, the final form of the optimization problem
will be given with respect to both the intake and exhaust
crankshafts.

3.1 Path Parameterization

With the trajectory of the system, rather than the control
input, used as the optimization variable, it is necessary to
parameterize the the trajectory variable. This variable is
defined as θd(k), the desired position of the crankshaft,
and replaces rj+1(k) in (3). Rather than directly opti-
mizing θd(k) for all discrete points k = 1, 2, . . . , N in

a cycle, parameterization reduces the design space and
optimization terms for this problem, creating a tractable
problem for online implementation. The Fourier series was
selected to parameterize θd(k) due to its innate ability to
approximate periodic functions. Further, as the Fourier
series is made up of infinitely differentiable trigonometric
functions, θ(k) and all of its higher order derivatives can
be defined using the same basis parameters, increasing the
cost function design space without increasing the number
of optimization variables. However, it should be noted that
any type of parameterization restricts the form of the path
and may result in a sub-optimal reference.

The highest order derivative of the trajectory variable,
in this case θ̈d, is defined using the Fourier series and
the lower order terms θ̇d and θd are defined through
integration, where

θ̈d(k) = ḧ(k)TΓ (6a)

θ̇d(k) = ḣ(k)TΓ + ωset (6b)

θd(k) = h(k)TΓ + ωsetk +

m∑
n=1

γn,1
(nwset)2

− π (6c)

with ḧ(k) and the basis parameters Γ given as

ḧ(k) = [1 cos(wk) sin(wk) cos(2wk) sin(2wk)

. . . cos(m ∗ wk) sin(m ∗ wk)]T
(7)

Γ = [γ0 γ1,1 γ1,2 γ2,1 γ2,2 . . . γm,1 γm,2]
T . (8)

The form of ḣ(k) and h(k) follow directly from integration
of (7). In (6b), the constant of integration is wset which
denotes the desired velocity setpoint. Similarly, in (6c), the
summation of the Γ terms corresponding to cosine terms
in h(k) ensures the position at k=0 is −π radians, meaning
the piston is at bottom dead center (BDC). If a nonzero
ECL is desired, the value can then become − (π + ECL)
for the intake crankshaft, ensuring the intake reference
trails the exhaust reference by the desired ECL. In (7), w =
2πf∆t where f is the frequency of the periodic function
and ∆t is the sampling period. The number of frequencies
contained in the Fourier series parameterization is denoted
by m and the number of basis parameters is equal to
2m + 1. This tunable parameter m presents a trade-off
between the computational burden and precision of the
path parameterization which will be discussed further in
the results section.

3.2 Cost Function Derivation

The objective of this optimization process to maximize the
system efficiency. This can be approximated by minimizing
any losses from the electric motors as they absorb the
torque generated by the engine, assuming a fixed fueling
input. While this neglects any possible indicated efficiency
improvements for the engine, it was shown in Drallmeier
et al. (2021b) that the motor efficiency is the dominant
term for intra-cycle efficiency. This leaves the thermal
efficiency to be improved through inter-cycle operation,
which is outside the scope of this work. Therefore, this
problem, for each crankshaft independently, can be stated
mathematically as

min
Γ

J =

N∑
k=1

Ploss,j(k) (9)
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To transcribe this optimization problem into the form
provided in (2), the power loss term, Ploss, needs to be
expressed in terms of the basis parameters Γ. As this term
represents instantaneous power lost through the electric
motors when extracting work from the crankshaft, it is
defined as

Ploss,j(k) =
3

2
ij(k)

2R+ C(θ̇d,j(k)− ej(k))
2 (10)

which accounts for the resistive and frictional losses of the
electric motor. The winding resistance is denoted as R and
the coefficient C is used to scale the friction losses by the
true rotational velocity where θ̇j(k) = θ̇d,j(k)− ej(k) with
ej(k) representing velocity tracking error. The quadrature
current, i(k), of the electric motors is proportional to the
torque generated through the relationship

ij(k) =
Tm,j(k)

9λm
(11)

where λm represents the flux-linkage of the motor windings
due to the permanent magnets and iron in the motors. For
the specific electric motors, the values of R = 23.3 ∗ 10−3

Ω, C = 0.038 and λm = 0.137 Nm/A are used. Now, we
can use (10) and (11) to write the power loss function in

terms of Tm(k) and θ̇d(k). However, Tm(k) is the control
input to the system, obtained from feedback control which
is a function of the crankshaft motion (Drallmeier et al.
(2021a)). Therefore, the lower level control law for tracking
the desired reference, defined by the expression

Tm,j(k) = T̂eng,j(k)− Iθ̈d,j(k) +Ke,j (12)

can be used to replace Tm(k) as a function of θ̈d(k).

The value T̂eng(k) − Jθ̈d(k) represents the feedforward
term based on an approximation of engine torque and
the desired crankshaft acceleration while Ke represents
the error feedback value accounting for any errors in the
torque estimation. Now, changes in θd(k) can be used to
manipulate the required Tm(k) for control and improve
the work extraction efficiency, resulting in a power loss
function of

Ploss,j(k) =
R(T̂eng,j(k)− Jθ̈d,j(k) +Ke,j)

2

54λ2

+ C(θ̇d,j(k)− ev,j)
2.

(13)

Substituting in the trajectory parameterization defined in
(6) and expanding the squared terms in the (13), the cost
function in terms of Γ can be defined as

J =
N∑

k=1

(
βq2Γ

T
j ḧ(k)ḧ(k)

TΓj + βq1Γ
T
j ḣ(k)ḣ(k)

TΓj

+βl2,jΓ
T
j ḧ(k) + βl1,jΓ

T
j ḣ(k) + cj

) (14)

where the β coefficients are defined as

βq2 =
RI2

54λ2
(15a)

βq1 = C (15b)

βl2,j = − 2IR

54λ2
(T̂eng,j +Ke,j) (15c)

βl1,j = 2C(ωset − ev,j) (15d)

(15e)

and the term c, although independent of Γ and not influen-
tial on the optimization, is included here for completeness
as

cj =
R

54λ2

(
T 2
eng,j +K2

e,j + 2Teng,jKe,j

)
+C

(
ω2
set + e2v,j − 2ev,jωset

)
.

(16)

Note, for the β coefficients scaling the quadratic Γ terms,
the cycle index dependence can be dropped as these
coefficients are constant. Further, as the basis parameters
Γ are time invariant during a cycle, they can be moved
outside of the summation term in (14), thus recovering
the form provided in (2).

3.3 ECL Constraint

The previous section provides the parameterized cost
function for a single independent motor/crankshaft cou-
pling. However, if the relative motion between the two
crankshafts in this hybrid OP engine design is to be
constrained, the power loss term should be duplicated for
the second crankshaft, which is trivial as the dynamics are
identical. This results in a cost function

min
Γ

J =

N∑
k=1

(
P exh
loss,j(k) + P int

loss,j(k)
)

(17)

where the superscripts denote the exhaust and intake
crankshafts and each term can be expressed in terms of
Γ using (14) and (15). However, each crankshaft will use
independent Γ parameters as each motion profile can be
unique, increasing the number of basis parameters now to
q = 4m+ 2.

With each crankshaft included in the optimization prob-
lem, the ECL reference can be fixed at certain points
during the cycle using the parameterized form of θexhd (k)−
θintd (k) = ECL to populate A ∈ Rg×q and b ∈ Rg defined
in (2) where q is the number of parameters and g is the
number of constraints. Intake and exhaust port closing was
selected as the point to constrain the ECL as this point in
the cycle is highly influential on the breathing dynamics
while also determining the trapped volume and thus the
effective compression ratio of the engine. Additional points
could be selected if necessary, but optimization results
show little fluctuation elsewhere in the cycle. Additionally,
to ensure a constant average velocity during steady state
operation, the value of γ0 for both the intake and exhaust
crankshafts is constrained to 0, which sets the total accel-
eration of a cycle to 0.

4. RESULTS AND DISCUSSION

This trajectory learning method was tested experimen-
tally under both motored and fired conditions at a speed
setpoint of 1600 RPM. For steady state operation, the
learning algorithm was triggered once every 30 cycles to
reduce the computational load on the dSPACE Micro-
labbox and allow any tracking error to reach a steady
state point before triggering an additional learning cycle.
The sampling rate used for collecting measurements for
(4) and (5) is 5 kHz. For the motored test, an ECL of
4 degrees was maintained to demonstrate the ability to
learn with a nonzero ECL present. A value of m = 6
is used for this test. During the fired tests, engine out
power was held constant at 35 kW and the ECL was set
to 0 degrees. Results quantifying the ITO performance are
provided from averaged results of 950 cycles. Note that a
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Fig. 2. Results detailing the transition to a learned motion profile at a 4 degree ECL. (a) Motor control torque used to
track desired trajectory. (b) Velocity reference. (c) Cylinder pressure. (d) Tracking error of crankshaft. (e) Evolution
of the basis parameters during larger timescale to show the rapid convergence of parameters.

positive motor torque denotes work being extracted from
the engine, and a negative torque denotes work being put
into the engine.

4.1 Motored Conditions

The results in Fig. 2 showing the transition from a constant
velocity crankshaft motion reference to a motion reference
learned using the ITO method for a motored case. The
vertical dashed lines identify the cycle over which (4)
and (5) were calculated. The next cycles are then used
to calculate Γj and then near the 6.72 second mark, the
new reference trajectory is introduced at BDC of the
exhaust crankshaft. From Fig. 2a it is apparent the learned
trajectory provides a drastic reduction in the motor torque
required for tracking control of the crankshaft motion
while still maintaining an acceptable level of tracking error
of less than ±1 degree for crankshaft position, shown
in Fig. 2d. This substantiates the conclusions made in
Drallmeier et al. (2021b) that a near constant motor
torque profile maximizes the work extraction efficiency.
The new crankshaft velocity reference, provided in Fig.
2b, shows the optimal velocity reference fluctuates nearly
opposite that of cylinder pressure, shown in Fig. 2c, with a
slight difference between the intake and exhaust crankshaft
as each will experience a different engine torque due to
the ECL. For a constant velocity reference, the motor is
required to supply increasing torque to the crankshaft as
cylinder pressure increases, only extracting work as each
crankshaft passes top dead center (TDC). Rather, the
learned trajectory allows the crankshaft to slow during
compression and accelerate during expansion, smoothing
out the motoring torque required to maintain an average
cycle velocity. Further, as the ECL is maintained with
the learned trajectory, there is negligible impact to the
cylinder pressure after enabling learning.

The basis parameters, Γ, are shown in Fig. 2e over the
full recording length rather than only the cycles where
learning was enabled. As the quadratic β coefficients in
(15a) and (15b) are positive and the number of samples
for each cycle is larger than the number of basis parameters
used, the optimization problem given by (2) is guaranteed

Fig. 3. Single cycle results for the exhaust crankshaft of the
(a) learned velocity reference and (b) required motor
torque input for tracking the reference for fired cases
at 1600 RPM and 35kW engine out power.

to be strictly convex (see Proposition 1 in Drallmeier
et al. (2022)). As such, the first values obtained for the
Γ parameters are near the optimal location. However,
as (15c) and (15d) are time varying and dependent on
measured values, a few learning iterations are required
before Γ reaches steady state.

4.2 Fired Conditions

The ITO method can also be utilized during fired engine
cycles to improve system efficiency while extracting posi-
tive work from the engine. Figure. 3 provides a single cycle
comparison of ITO method results under fired conditions
with increasing values of m which denotes the number
of frequencies contained in the Fourier series parameter-
ization. This figure only shows the exhaust crankshaft
results as each crankshaft operates similarly for the 0 ECL
setpoint. A constant velocity baseline cannot be utilized
here as the engine torque which the motor would have to
match exceeds the capabilities of the electric motors. As
m is increased, the trajectory can better approximate the
ideal reference and a significant reduction in the peak-to-
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Table 1. Cycle average results for the fired
cases over 950 cycles.

m = 4 m = 6 m = 8

Motor Torque Amplitude [Nm] 1072.8 613.8 297.1
Electric Machine η [%] 72.3 78.0 81.4

peak motor torque is achieved. The mean value of peak-
to-peak torque amplitude from 950 engine cycles for each
case is quantified in Tab. 1.

An additional performance index to quantify these results
is the electric machine efficiency, and indeed from m = 4
to m = 8, there is an increase in efficiency of 9.1% for the
mechanical to electrical conversion of power through the
electric machines, including the inverter losses, as shown
in Tab.1. Further improvement beyond m=8 is limited
due to the quadratic computational complexity associated
with the matrix multiplication required in (4) and (5)
which must be calculated at each sample point for the
summation. However, it should be noted that this quantifi-
cation of efficiency here underestimates the improvements
capable for this system as the current motors are extremely
oversized for the application. They were sized for peak
torque rather than nominal power ratings with each AVID
AF240 rated for a nominal power of 188 kW. The engine
in this case is operating at a 35 kW setpoint, meaning each
crankshaft is producing approximately 17.5 kW.

5. CONCLUSION

This paper presents an application of the ITO method
for learning the optimal crankshaft motion profile of a
hybrid opposed piston engine. The ITO method can be
implemented with little prior knowledge of the system
and reduces the need for offline optimization and the
impact of model uncertainty on online performance. The
effectiveness of the learning algorithm is dependent largely
on the precision of the trajectory parameterization which
is limited by the computational time allowed by the
physical system.
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