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AbstractThis paper addresses the problem of finding the optimal Eco-Driving (ED) speed
profile of an electric Connected and Automated Vehicle (CAV) in an isolated urban un-
signalized intersection. The problem is formulated as a single-level optimization and solved using
Pontryagin’s Minimum Principle (PMP). Analytical solutions are presented for various conflicts
that occur at an intersection. Cooperation is introduced amongst CAVs as the ability to share
intentions. Two levels of cooperation, namely the Cooperative ED (C-ED) and Non-Cooperative
(NC-ED) algorithms are evaluated, in a simulation environment, for energy efficiency with
Intelligent Driver Model (IDM) as the baseline.
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1. INTRODUCTION

The main goal of Eco-Driving (ED) is to adopt an energy-
efficient driving technique and people motivated by this
technique are often called hypermilers. In the past decade,
ED has been formulated as an optimal control problem,
where the vehicle speed is directly controlled or indirectly
advised to the driver to minimize energy consumption over
a certain horizon (Maamria et al. (2016); Wang et al.
(2014); Han et al. (2018); Dib et al. (2011)). ED can be
applied to several driving scenarios such as car-following,
intersection crossing, eco-acceleration/deceleration, etc.

With the advent of Connected and Automated Vehicles
(CAVs), ED can be enforced more easily than with human
drivers. Furthermore, in a connected environment, the
CAVs can communicate to cooperate amongst each other
rather than compete against each other. Cooperation in
what follows refers to the sharing of information and the
willingness of the CAVs to coordinate their movement for
the common good. Based on the amount of information
shared and the coordination of movements, cooperation
can be categorized into three types, i.e., non-cooperative,
cooperative, and centralized cooperative schemes. In the
non-cooperative scheme, each CAV selfishly optimizes for
itself and shares only its instantaneous control action with
its neighbors. In the cooperative scheme, each CAV still
selfishly optimizes for itself but shares its future intentions
with the neighboring CAVs and in the centralized coopera-
tive scheme, the control action of each CAV is such that it
optimizes for the entire group. Control schemes of single-
CAV optimization (i.e., non-cooperative and cooperative),
often fall under the umbrella of decentralized optimization

in literature. In this paper, two types of cooperation,
namely the non-cooperative and cooperative schemes are
applied to the intersection crossing ED scenario.

An intersection is a junction where two or more roads
meet and are categorized into two-way, three-way, four-
way intersections, roundabouts, etc. They can also be cat-
egorized based on traffic control technology as: signalized
(traffic lights), stop, yield and un-signalized intersections.
An intersection being a shared resource and CAVs wanting
to use it simultaneously can cause conflicts leading to ei-
ther rear-end or lateral collision. In this paper, we consider
a single lane, isolated four-way un-signalized intersection.
In the literature on un-signalized intersections, the area
within the perimeter where CAVs can communicate with
each other, or infrastructure is often called the Control
Zone (CZ) and the region in the center, where vehicle paths
cross, is called the Intersection Zone (IZ). The lane in the
CZ leading to and out of the IZ is called the entry lane and
exit lane, respectively. With an intersection being a shared
resource it poses two main challenges, namely, scheduling
of the CAVs in the IZ and the continuous optimization,
involving the motion planning of CAVs.

The scheduling problem determines the priority of CAVs
at the intersection. Heuristic or rule-based methods such
as First Come First Serve (FCFS) (Dresner and Stone
(2008)) or First-In-First-Out (FIFO), right-before-left and
nearest to the crossing point, etc. are often used in litera-
ture to schedule CAVs crossing an intersection. Scheduling
problem can also be cast as an optimization problem
with the objective to minimize travel time or energy con-
sumption using tools such as Mixed Integer Linear Pro-
gramming (MILP) (Jin et al. (2012); Bin Mohamad Nor
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and Namerikawa (2019)). The second challenge, motion
planning, involves generating paths or trajectories for the
longitudinal and lateral motion of the CAVs. The liter-
ature distinguishes path as having a spatial component
and trajectory having a temporal component. A path is
geometric set of points, f(x, y, , ..) = 0, to go from point a
to point b and trajectory describes the evolution of path
in time, s(t). With a CAV following a predefined fixed
path, the problem narrows down to finding the trajectory
(i.e., velocity) with respect to a certain objective while
respecting constraints such as vehicle dynamics, speed
limits, and safety constraints. In our work, we considered
a predefined schedule/crossing order and a fixed path.

A rich body of literature is available for intersection
scheduling and motion planning. A comprehensive overview
of the various heuristic and optimization methods em-
ployed can be found in (Rios-Torres and Malikopoulos
(2017); Chen and Englund (2016)). With a focus on tra-
jectory optimization with respect to energy consumption,
we review some of the works here. (Bichiou and Rakha
(2019)) proposes a problem formulation to minimize the
trip time and the control effort of a CAV crossing an
intersection. Pontryagin’s Minimum Principle (PMP) is
used to formulate the problem. The authors state that the
problem, in theory, could be solved using PMP. However,
owing to the difficulty in obtaining analytical solutions,
the problem is solved using numerical discrete and convex
optimization. Rear-end collision in the CZ is avoided by
formulating a position-inequality constraint and lateral
collision is avoided by modeling the entire IZ as a collision
region. Collision region can also be modelled as a point on
the fixed path of the vehicles allowing for more than one
vehicle inside the IZ. The red dots in Fig. 1b represent a
collision point. In the numerical Model Predictive Control
(MPC) proposed by (Hult et al. (2018)), the cost func-
tional directly captures the energy usage of an Electric
Vehicle (EV) and the travel time. (Makarem and Gillet
(2013); Campos et al. (2014); Kloock et al. (2019)) for-
mulate a quadratic MPC seeking to minimize the control
effort and the deviation from the reference velocity.

While numerical methods facilitate the use of non-linear
models and complex formulations, analytical methods pro-
vide fast and explicable solutions. However, only a handful
of research efforts have been made on obtaining analytical
closed-form solutions in the optimal control framework
of CAVs in an intersection. (Malikopoulos et al. (2018))
presents a bi-level optimization problem for scheduling
and trajectory of CAVs in an intersection without any
turns. The upper-level optimization schedules the CAVs
by maximizing the throughput under the FIFO policy.
The lower-level problem minimizes acceleration, which the
authors argue minimizes the transient engine operation
and in turn the fuel consumption. With the optimization
horizon of the lower-level problem only on the entry lane,
the solution to this problem produces an optimal speed
profile only until the start of IZ. The vehicles are restricted
to a constant velocity thereafter through the intersection.
In a follow-up work (Zhang and Cassandras (2019)), the
authors extended the problem formulation to consider
left and right turning vehicles. The authors present a bi-
level optimization solely for the trajectory of the CAVs.
Still, under FIFO policy, the upper-level problem has an

optimization horizon only for the entry lane jointly min-
imizing travel time and accelerations. The arrival time
and velocity at the end of the entry lane are then used
as input to the second optimization problem. The lower-
level problem jointly reducing jerks and accelerations with
an optimization horizon only for the IZ. The CAVs are
restricted to constant velocity on the exit lane to avoid
rear-end collision. The solution to the above formulation
leads to one optimal speed profile on the entry lane and
a second optimal speed profile inside the IZ followed by a
constant velocity.

The main objective of the paper is to obtain analytical
solutions to the ED problem of an electric CAV crossing
an un-signalized intersection subject to safety constraints,
and to explore the benefits of cooperation . The con-
tributions of the paper can be summarised as follows.
We formulate a single-level optimization problem to the
ED intersection scenario with an optimization horizon
that includes the entry lane, the IZ and the exit lane.
The analytical objective function used captures directly
the energy usage in an EV, and can deal with position
and speed constraints, similar to what has already been
studied (Lakshmanan et al. (2021a,b); Han et al. (2019))
and experimentally demonstrated (Ngo et al. (2022)) for
car-following. Cooperation is also introduced amongst the
CAVs as the ability to share intentions and two levels of
cooperation, namely the cooperative and non-cooperative
ED algorithms, are evaluated for performance in terms of
energy consumption.

The organization of the paper is as follows. In section 2, the
intersection and vehicle model along with its assumptions
are presented. The various conflicts in an intersection are
also discussed. In section 3, the optimal control problem
is formulated along with the various constraints and its
solutions are presented. Section 4, details the algorithm
and the cooperative nature of the vehicles. The simulation
results and its discussions are presented in section 5.

2. INTERSECTION MODEL, VEHICLE MODEL AND
CONFLICTS

This section describes the considered intersection and
vehicle model along with its various assumptions. The
various conflicts that occur in an intersection is also
discussed.

2.1 Intersection Model

The intersection considered here is an isolated un-signalized
four legged intersection with flat straight roads crossing at
right angles to each other. Each leg of the intersection con-
sists of two lanes with traffic flowing in opposite directions.
The center of the intersection where where two or more
paths can intersect, i.e., cause a lateral collision is called
the Intersection Zone (IZ). The roads leading to and away
from the IZ, of length l, are called the entry lane and exit
lane respectively. The area around the IZ where CAVs can
communicate with each other and a coordinator is called
the Control Zone (CZ). The point where entry lane meets
the IZ is called the Diverging Point (D) and the point
where IZ meets the exit lane is called the Merging Point
(M). Fig. 1 represents the intersection model considered
in this paper.
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(a) Intersection Model : M,D, C represent the merging point, diverg-
ing point and crossing point respectively. ℓ and w are the exit and
entry lane length and width of each lane respectively

(b) The dots represents the 16 crossing conflict points

Figure 1. Intersection Model and Conflict Model

For a four-way intersection with one lane in each direction,
there are a total of 12 paths across the intersection. The
entry lane and the direction of a CAV determines along
which of the 12 paths it travels. Collision region in this
work is modelled as points, called Crossing Points (C),
where the paths of the CAVs intersect. Figure 1b shows
the the paths and C in the IZ.

We assume that each CAV follows a predefined path
without any deviation. The path of a CAV taking a left
or right turn is modelled as constant radius arc, with a
central angle of 90◦, when passing through the IZ.

Let N (t) = {1, 2, ..., N(t)} be the set of CAVs’ ID inside
the CZ at time t ∈ R+, where N(t) ∈ N is total number
of CAV present in the CZ at t. CO(t) is a permutation
of N (t), that represents the crossing order, according to
a given criterion. As mentioned earlier, the criterion can
be FCFS, right-before-left, or as a result of an upper-level
optimizer. In this work, we assume a predefined crossing
order that is computed and communicated to the vehicles
via a coordinator present at the intersection.

Each CAV entering the intersection has perfect infor-
mation about the geometry of the intersection and can
compute the distance to the crossing points on its path.
Furthermore, each CAV is able to receive information from
other CAVs in the CZ, that have higher priority, on their
entry lane, heading direction, arrival time at their crossing
point, and instantaneous or future control actions. In this
modelling framework, we impose further assumptions to
abstract from implementation issues and focus on the
fundamental aspect of motion planning: (i) all CAVs are
equipped with V2V and V2X communication capabilities

and appropriate sensors to sense local information of itself
and others in the proximity without losses or delays; (ii)
the CAVs are not allowed to overtake each other nor make
a U turn; (iii) no pedestrians are considered crossing the
intersection.

2.2 Vehicle Model

As mentioned above, the CAVs follow a fixed path meaning
vehicles can control only its acceleration/deceleration.
This enables to decouple path-trajectory and use a second
order longitudinal dynamics to describe each CAV i ∈
N (t). Let vi(t), xi(t), ai, li denote the speed, position,
acceleration and the length of the i-th vehicle. With the
control variable ui of each CAV chosen as the net force
produced by the powertrain per unit mass, Ft/m, and the
resistive forces represented by a constant h, the linearised
longitudinal vehicle model is given as

ẋi = vi(t),

v̇i = ui(t)− h.
(1)

The energy consumption at the battery Pb is calculated
using simple transmission and electric motor models, in-
spired by those used in (Dib et al. (2011)) given by,

Pb(t) = p0ui(t)vi(t) + p1u
2
i (t), (2)

where p0 and p1 represent battery modelling parameters.

2.3 Conflicts

There are four types of basic conflicts in a traffic conflict
analysis: diverging, crossing, merging, and sequential/car-
following conflict (Thompson et al. (2009)). See Fig. 2.

A diverging conflict occurs when CAVs have the same
entry lane but different heading direction and the conflict
exists for CAV i ∈ N (t) only until D. Let DCi(t) represent
the set of vehicles with higher priority than i arriving in
the same lane with different heading direction. Merging
conflict occurs when vehicles from different entry lanes
have the same exit lane. With the knowledge of intersec-
tion geometry, entry lane and heading direction from other
CAVs, the exit lane can be easily found. A merging conflict
is active only in the exit lane starting from M. Let MCi(t)
represent the set of CAVs with higher priority than i
having the same exit lane. A crossing conflict occurs inside
the IZ when CAVs with different paths intersect. From
Fig. 1b there are a total of 16 crossing points, and CCi(t)
represents a set containing the higher prioritized CAVs
whose paths intersect with CAV i. The sequential/car-
following conflict occurs when vehicle i has a preceding
CAV i following the same path. CF i(t) represents the set
of vehicles with higher priority that have the same path
as i. The sets DCi(t),MCi(t), CCi(t), CF i(t) are ordered
with ascending order of priority defined by CO(t) and are
subsets of N (t). They are collectively referred to as the
conflicting sets in the reminder of the paper.

Another important constraint independent of the other
CAVs in the intersection is the turning speed constraint.
We enforce a safe turning speed for CAVs taking a turn
in the intersection. The centripetal force provided by the
tyre friction forces, defines the safe speed of the CAVs in
turns and is given by,

vsafe =
√

fgR, (3)
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Figure 2. Four Basic Constraints in an Intersection.

where f , g, and R represent the tyre friction coefficient,
gravitational constant and radius of the turn. The latter
is different for left and right turning vehicles.

It now remains to obtain the optimal feedback control law
ui(t) for each CAV satisfying the above constraints.

3. OPTIMAL CONTROL PROBLEM FORMULATION
IN AN INTERSECTION

This section describes the Optimal Control Problem
(OCP) formulation for a CAV i and the mathematical
translation of the various conflicts previously discussed.
The solution is obtained using Pontryagin’s Minimum
Principle (PMP).

3.1 Unconstrained Eco-Driving Problem

With the main objective of ED to minimize cumulative
energy consumption over a trip and with our work focusing
on EVs, the running cost is given by the electrochemical
power from the battery Pb(t) defined in (2). With only the
main equations summarized here, the readers are referred
to (Han et al. (2019); Sciarretta and Vahidi (2020)) for a
detailed derivation. The optimal control problem reads,

ai(t) = arg min
ai(t)

∫ Ti

0

p0(ai(t+ k) + h)vi(t+ k)

+ p1(ai(t+ k) + h)2 dk (4)

subject to state dynamics,

ẋi = vi(t), v̇i = ai(t),

and Boundary Conditions (BC),
xi(t), vi(t), xi(Ti) = Di, vi(Ti) = Vi,

where xi(t) and vi(t) are the position and velocity at time
t. The desired final time is denoted by Ti and Di is the
length of the path from the start of the entry lane to the
end of the exit lane. The desired final speed is Vi. The
solution of (4) yields a parabolic speed profile as a function
of time,

vi(t+ k) = vi(t) +

(
−4vi(t)

Ti
− 2Vi

Ti
+

6Di

T 2
i

)
k+(

3vi(t)

T 2
i

− 6Di

T 3
i

+
3Vi

T 2
i

)
k2, k ∈ [0, Ti) . (5)

and a cubic position profile as a function of time,

xi(t+ k) = xi(t)+ vi(t)k+

(
−2vi(t)

Ti
− Vi

Ti
+

3Di

T 2
i

)
k2+(

vi(t)

T 2
i

− 2Di

T 3
i

+
Vi

T 2
i

)
k3, k ∈ [0, Ti) . (6)

The associated energy consumption of the trip Eb, a
function of vehicle parameters p0, p1, h and boundary
conditions, is given by

Eb = p0hDi + p0
V 2
i − v2i (t)

2
+ p1h

2Ti + 2p1h (Vi − vi(t))+

+4p1

(
3D2

i

T 3
i

− 3Di (vi(t) + Vi)

T 2
i

+
v2i (t) + vi(t)Vi + V 2

i

Ti

)
.

(7)

3.2 Car-Following conflict/Sequential Conflict

Car-following conflict occurs when CAV i and an immedi-
ately preceding CAV p ∈ CF i(t), have the same path. Such
a conflict leads to a potential rear-end collision without
adjusting CAV i’s speed. A collision of such type is formu-
lated as a position-inequality constraint. CAV p’s motion
is predicted under the assumption of constant acceleration
ap(t) for the entire horizon Ti,

xi(t+ k) ≤ xp(t) + vp(t)k +
1

2
ap(t)k

2 − smin , (8)

where xp(t), vp(t) and ap(t) are the position, velocity and
acceleration of CAV p, while smin denotes the constant safe
minimum gap. In the rest of the paper, the term xp(t) −
smin is lumped into a single term xp(t) for convenience.
The car-following constraint is solved in (Han et al. (2018))
and the main equations are presented here. The optimal
speed profile is given as

vi(t+ k) = vi(t) +
(
ap(t) +

4

θi
(vp(t)− vi(t))+

6

θ2i
(xp(t)− xi(t))

)
k −

( 6

θ3i
(xp(t)− xi(t))+

3

θ2i
(vp(t)− vi(t))

)
k2, k ∈ [0, θi) , (9)

where θi denotes the contact time where the position
constraint is met (xi(t + θi) = xp(t)) and is found by
solving the cubic equation
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(
vi(t)− Vi + ap(t)Ti

)
θ3i+(

4vp(t)Ti + ViTi − 2vi(t)Ti +
ap(t)T

2
i

2
− 3Di

)
θ2i+(

6(xp(t)− xi(t))Ti + vi(t)T
2
i − vp(t)T

2
i

)
θi−

3(xp(t)− xi(t))T
2
i = 0. (10)

The associated closed-form energy consumption is not
presented here due to space constraints but is easily
obtained by inserting (9) in (4).

3.3 Crossing Conflict

A crossing conflict occurs when the path of two or more
CAVs intersects in the IZ leading to a potential lateral
collision between them. A collision of such type is for-
mulated as an interior-point constraint (Bryson and Ho
(1969)), where equality constraints on the states are im-
posed point-wise along the horizon. Consider two CAVs i
and c ∈ CCi(t) with CO(t) = {c, i}. The lateral collision
avoidance constraint is formulated as

xi(t+KCci
c ) = Cic − xi(t) with KCci

c = kCci
c + dT , (11)

where Cic is the distance to the crossing point from
xi(0) = 0, kCci

c is the arrival time of CAV c at its own
crossing point Cci, and dT is a safety margin between
arrival of the CAVs at their respective crossing points.
The solution to the above constraint is obtained as follows.
The optimal speed profile of CAV i is composed of two
almost-independent unconstrained segments (5), defined
by BC: xi(t), vi(t), Cic, vi(t + KCci

c ) for the first segment
and Cic, vi(t+KCci

c ), Di, , Vi for the second segment. With
the position and time at the junction of the two segments
imposed by (11), the optimal speed profile is completely
defined by the free parameter vi(t + KCci

c ). The energy
consumption of the whole trip Eb is the sum of energy
consumption of each segment and the optimal value for
vit = vi(t+KCci

c ) is obtained by minimizing Eb,

Eb = E
(1)
b + E

(2)
b ,

vit s.t. ∂Eb/∂vit = 0
(12)

where E
(1)
b and E

(2)
b are obtained from (7). vit is explicitly

obtained and is a function of the two segments’ boundary
conditions.The optimality of the approach has been shown
in (Han et al. (2019); Sciarretta and Vahidi (2020)).

3.4 Diverging Conflict

A diverging conflict occurs, in the entry lane, when CAV i
and its immediately preceding vehicle d ∈ DCi(t) have
the same entry lane and different heading direction. Once
CAV d changes direction at D, CAV i is no longer in con-
flict. Like the car-following, the diverging conflict poses a
potential rear-end collision and is formulated as a position-
inequality constraint with the exception that CAV i is
constrained only until D, see Fig. 3. More formally,

xi(t+k) ≤

{
xd(t) + vd(t)k +

1

2
ad(t)k

2 − smin xi(t) ≤ D
∞ xi(t) > D

(13)
As in section 3.2, CAV d’s motion is predicted under the
assumption of a constant acceleration until D.

The optimal solution to the above constrained OCP is
made up of two segments, i.e., a first segment where (9)
applies, satisfying the inequality constraint and the second
segment where (5) applies. The BC for the first and second
arc are given as xi(t), vi(t), xi(t + kDd ), vi(t + kDd ) and
xi(t + kDd ), vi(t + kDd ), Di, Vi respectively. With the time
at the junction of the segments imposed by kDd (arrival
time of CAV d at D), the optimal solution is now defined
by two unknown free parameters, xi(t + kDp ), vi(t + kDp ).
The optimal value for these two parameters is found by
minimizing the sum of energies of the two segments (i.e.,
the total energy consumption of the trip Eb).

Eb = E
(1)
b + E

(2)
b ,

vi(t+ kDd ) s.t. ∂Eb/∂vi(t+ kDd ) = 0,

xi(t+ kDd ) s.t. ∂Eb/∂xi(t+ kDd ) = 0

(14)

where E
(1)
b is energy consumption obtained using the

solution (9) and E
(2)
b is given by (7).

Time (s)

D
is
ta
n
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(m
)

(a)

Time (s)

D
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n
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(m
)
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Figure 3. Diverging Conflict Solution. Fig.3a, shows con-
straint violation when employing (5)and in fig. 3a,
CAV i uses the solution obtained from (14). CAV d
and CAV i are represented by red and blue respec-
tively

3.5 Merging Conflict

A merging conflict occurs when the path of CAV i and
CAV e ∈ MCi(t), merge at Mi. CAV i remains conflict
free from CAV e until Mi but upon entering the exit
lane CAV e poses a potential rear-end collision. As in
section 3.4, merging conflict is formulated as a position-
inequality constraint but starting from Mi until the end
of the horizon.The subscript i in Mi indicates that the
merging point depends on the path (i.e., left, right and
straight) taken by the CAV i.

The optimal solution to the above constrained OCP is
made up of two segments, i.e., first segment where (5) ap-
plies and the second segment where (9) applies. The BC for
the first and second arc are given as xi(t), vi(t),Mi, vi(t+
ke) andMi, vi(t+ke), Di, Vi, respectively. CAV i’s position
at the end of first segment is constrained to arrive at
xi(t + ke) = Mi, where ke is the arrival time of CAV e
at Me + ds s.t. ds > smin. This ensures that CAV i
arrives at Mi after e and does not violate the position
constraint at Mi. With both position and time at the
junction imposed, the optimal solution is now defined by
the one unknown free parameter, vi(t + ke). The optimal
value for this parameter is found by minimizing the trip’s
total energy consumption.
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Eb = E
(1)
b + E

(2)
b ,

vi(t+ ke) s.t. ∂Eb/∂vi(t+ ke) = 0
(15)

where, E
(2)
b is the energy consumption obtained using the

solution (9) and E
(1)
b is given by (7).

Remark 1. A CAV i ∈ N (t), could face none, any one or
a combination of the four basic conflicts. When there is
a combination of conflicts, the optimal solution consists
of two or more segments. The free parameters at the
junction are identified and the optimal value for the free
parameters are obtained by minimizing the energy of the
entire trip, as shown earlier. An exhaustive list of all
possible combinations and its solutions are not presented
here due to limitations in space.

3.6 Turning Constraint

The turning speed constraint restricts a CAV’s speed in
the IZ to a maximum defined by (3). The constraint is
enforced by letting the speed of CAV i equal to vtr < vsafe
at the mid point of its path in the IZ. The choice of vtr,
a lower value than vsafe is a conservative approach that
keeps the CAV’s speed below the threshold. More formally,

vi(t+ kt) = vtr,

xi(t+ kt) = (Di + xi(t))/2,
(16)

and vtr is obtained from

δ

2
−
(
vtr(vsafe − vtr)

amax
+

(vsafe − vtr)
2

2amax

)
= 0 , (17)

where amax is the maximum acceleration of CAV i and δ is
the vehicle’s turning path inside the IZ. The free parameter
kt is obtained by replacing vit by kt by in (12), with BC
for the two segments given by xi(t), vi(t), (Di+xi(t))/2, vtr
and (Di + xi(t))/2, vtr, Di, , Vi.

4. ALGORITHM

This section describes how, when a CAV i enters the
intersection, it identifies the constraints posed by the other
CAVs already in the intersection, and obtains its optimal
solution. At each time t, vehicles in the intersection, i.e.,
N (t), solve their OCP sequentially in the order dictated
by CO(t) . Therefore, when CAV i ∈ {N (t) : |N (t) > 1|}
enters the intersection, all higher prioritized vehicles have
already solved their OCP and hence can share their control
inputs to other arriving vehicles if needed. CAV i, using
the lane and heading direction information shared by other
vehicles and CO(t) from the coordinator, can compute
the vehicles in the conflicting sets. In the absence of any
vehicle in the intersection or any vehicle belonging to the
conflicting sets, CAV i is unconstrained and can simply
follow the solution in (5). However, in the presence of one
or more CAVs in the conflicting sets, CAV i could either
face one of the four basic constraints or a combination
of them. If there is only one vehicle that belongs to any
one of the conflicting sets, CAV i has one of the four basic
constraints. On the other hand, if there is one vehicle from
more than one of the conflicting sets, then CAV i has a
combination of the four constraints. For example, CAV
j ∈ DCi(t) and CAV k ∈ LCi(t), means CAV i has a
position-inequality constraint until D and an interior-point
constraint in the IZ. All possible combinations of conflicts

are identified, a priori, and their solutions are computed
as described in the previous section. With the conflicts
posed by the higher priority vehicles identified, all possible
solutions satisfying the conflicts are evaluated and CAV i
applies the solution with the least energy consumption.
Using the above example, the possible solutions to the
constraint includes the unconstrained solution (5), the so-
lution avoiding the diverging conflict, the solution avoiding
the crossing conflict, and the solution avoiding both. All
the four possible solutions are evaluated to choose the
one consuming the least energy without violating any con-
straint. The solution to these conflicts require information
from the corresponding CAVs to predict their motion or
arrival time. The amount of information received depends
on the cooperation amongst the CAVs

Remark 2. If |DCi(t) ∪ LCi(t)| > 1, then CAV i is in
conflict only with its immediately preceding vehicle, i.e.,
CAV with the lowest priority in |DCi(t)∪LCi(t)|. It should
be noted that CAV i can either face a diverging conflict
or a car-following conflict and not both simultaneously.
If |MCi(t)| > 1, then CAV i is in merging conflict with
the last merging vehicle, i.e. CAV with lowest priority in
|MCi(t)|. If |LCi(t)| > 1, the CAV that causes the maxi-
mum violation of the unconstrained solution of CAV i, a
method inspired from (van Keulen et al. (2014)), is the
conflicting CAV.

The described algorithm is embodied in a shrinking hori-
zon MPC fashion, where the boundary conditions are
updated at each time step.

We consider two levels of cooperation, namely the Non-
Cooperative ED (NC-ED) and the Cooperative ED (C-
ED) scenario. The scenarios differs in two aspects : (i) the
point at which CAV i determines if a higher prioritized
vehicle poses a crossing or merging conflict and (ii) the
amount of information shared to CAV i. As mentioned
earlier, CAVs in the intersection solve their OCP sequen-
tially in the order dictated by CO(t). Therefore, when
CAV i solves for its OCP, all higher prioritized CAVs all
have their solutions. Based on CAV i’s active constraint,
it might either need the conflicting CAV’s motion to avoid
a rear-end collision or its arrival time at a crossing point
to avoid a lateral collision or both.

In the NC-ED scenario, CAV i decelerates to a fixed
distance before the D called the visibility distance Dvis,
at which it determines whether a higher prioritized CAV
poses a crossing or merging conflict. This approach is
followed in (Krajzewicz and Erdmann (2013)). The speed
at Dvis is equal to amax multiplied by one second. Up until
Dvis, in the presence of either a diverging conflict or a
car-following conflict, CAV i measures the instantaneous
acceleration of CAV d or p to predict its motion as in
(13) or (8). At Dvis, CAV i, in the presence of a merging
conflict, measures the instantaneous acceleration ae(t) of
CAV e ∈ MCi(t). The acceleration ae(t), is used to predict
CAV e’s arrival time ke and its motion in the exit lane. In
the presence of a crossing conflict, CAV i measures the
instantaneous acceleration ac(t) of CAV c ∈ CCi(t), to
predict its arrival time kCci

c . The motion and arrival time
of the conflicting vehicles are predicted under a constant
acceleration assumption in the NC-ED.
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In the C-ED, CAV i determines if the higher prioritized
vehicles present a conflict or not as soon as it enters the
intersection. Cooperation is introduced in amongst CAVs
as the ability to share the intentions over a certain horizon.
In the presence of a conflict causing a rear-end collision,
the CAVs share their solution to CAV i. In order to be
used in the eco-driving control of CAV i, this information
is lumped into one “future mean value” ãx, evaluated over
a preview window length L, as

ãx(t) =
1

L

∫ t+L

t

ax(τ)dτ x ∈ {d, p, e}. (18)

as in (Lakshmanan et al. (2021a)). The acceleration ãx(t),
replaces the measured instantaneous acceleration in the
non-cooperative scenario, to predict the conflicting CAV’s
motion. The arrival times kCci

c and ke are computed from
the actual arrival time given by the solution used by CAVs
c and e. For example, if CAV c’s solution is given by (5),
its arrival time at Cci is computed using (6).

5. SIMULATION

In this section, we evaluate the performance of the pro-
posed NC-ED and C-ED algorithm to cross an urban
intersection, in a MATLAB simulation environment. The
algorithms are compared to a baseline scenario generated
by the traffic simulation software SUMO. The Intelligent
Driver Model (IDM) is used to describe the behavior of
the CAVs in the baseline. The performance is evaluated, in
terms of energy consumption, using a detailed Nissan Leaf
electric vehicle model presented in (Dollar et al. (2020)).

We consider an isolated urban intersection where l =
47 m and w = 4 m. The minimum safety distance smin

= 7 m and the safety dT to avoid a lateral collision is
2.5 s. The initial speed is uniformly distributed in the
interval 8.3 m/s ± 2 m/s. The maximum acceleration and
deceleration of the CAVs are set to 4 m/s2. A total of 30
CAVs are simulated with a traffic flow rate of 800, 1200,
and 1600 veh/hr. The entry time of the CAVs follows
an exponential distribution and the lanes and heading
directions are assigned using a uniform distribution. Unlike
the ED solutions, the IDM cannot enforce a prescribed
final time. The final time of CAV i obtained as an output
of IDM is used in ED to ensure same average speed for a
CAV i across the algorithms. The crossing order is given
by the right-before-left criterion in SUMO. The final speed
attained by IDM is used in ED.

The velocity trajectories of the CAVs, arriving at a flow
rate of 800 veh/hr, equipped with IDM, NC-ED and C-
ED algorithms are shown in Fig. 5. The CAVs using IDM
and NC-ED decelerate to 4 m/s2 at Dvis, which is 4.5 m
before D. At Dvis, CAV i checks for merging or crossing
conflicts with higher prioritized CAVs and obtains only the
instantaneous control input from the conflicting CAVs. In
the event of a conflict, the CAV i adjust its speed profile,
with some of them coming to an almost complete stop, e.g.
the purple CAV at 130 s. On the other hand CAVs with
C-ED have less variations in acceleration. CAVs taking
left or right turns also decelerate to satisfy turning speed
constraints, e.g. CAV 5, green speed profile at around 40 s,
is taking a right turn and has a safe speed of 5.24 m/s
inside the IZ.
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Figure 4. Energy Consumption

Each flow rate is simulated thrice with randomly generated
boundary conditions and their energy consumption are
given in Fig. 4. It can been seen that the total energy
consumption increases with an increase in flow rate. This
is due to the increased conflicts amongst the CAVs causing
a CAV i to adjust its speed profile. The CAVs in NC-
ED consumes 3 % less energy than IDM. With IDM and
NC-ED having same information on conflicting vehicles,
the energy reduction is caused by the optimal ED speed
profiles employed by the CAVs. The C-ED performs best
amongst the three, with a reduction of 23.7 % over IDM
and 21.3 % over the NC-ED. The CAVs with cooperation
have more accurate information about the conflicting
vehicles and get this information much earlier (i.e. at
xi(0) = 0) than the other two algorithms. This enables
better anticipation and hence the CAVs can adjust their
speed profiles accordingly.

6. CONCLUSION

The paper addressed the problem of finding the optimal
ED speed trajectory for the entire horizon (i.e., entry
lane, IZ and exit lane) of an urban isolated intersection.
Various conflicts in the intersection were formulated has as
constraints to the CAV and its solutions were presented.
Two levels of cooperation, namely, the non-cooperative
and cooperative, were studied and evaluated for energy
consumption in comparison to the baseline IDM. The
cooperative algorithm performed best indicating that, ear-
lier determination of conflicts with with higher prioritized
CAVs and better prediction of their arrival time and mo-
tion, leads to better energy efficiency.
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