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Abstract: This paper presents a real-time Model Predictive Control (MPC) formulation for autonomous
driving based on a lifted bilinear vehicle model developed using the Koopman operator. Koopman
operator based models can closely mimic the original nonlinear behaviors with a higher dimensional
linear structure, which is attractive for computationally efficient linear MPC formulations for controlling
nonlinear systems. However, current linear models based on linear Koopman realizations cannot capture
the control-affine dynamics in nonlinear systems. This may result in large discrepancies between the
original nonlinear system and the data-driven linear model, hindering its use in MPC. To address this
gap, first, a novel Koopman bilinear vehicle model that takes control-affine dynamics into consideration
is constructed and tested in open-loop simulations. This bilinear Koopman model is then linearized to
serve as a prediction model in MPC, and is shown to have higher accuracy compared to the state-of-
the-art linear models. The model is then used to develop a linear MPC formulation for simultaneous
planning and control of an autonomous vehicle. The formulation is tested on lane change scenarios with
obstacles against the nonlinear MPC and standard linear MPC benchmarks. The results show that the new
formulation can achieve a lane change performance closer to the nonlinear MPC with a computational
performance similar to the standard linear MPC. The new formulation is observed to be successful in
handling high speeds where the standard linear MPC fails.
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1. INTRODUCTION

Generating optimal and safe trajectories in real time is a persist-
ing challenge in autonomous driving. One of the methods used
to address this challenge is model predictive control (MPC) due
to its rigor and flexibility with incorporating constraints and
performance metrics (Liu et al., 2017). MPC has been adopted
in various autonomous driving scenarios including obstacle
avoidance (Wurts et al., 2021) and lane keeping (Bujarbaruah
et al., 2018). However, as nonlinearities become more impor-
tant, such as when vehicles are driven to their limits in emer-
gency maneuvers (Wurts et al., 2020, 2021), the formulations
become more difficult to solve reliably in real time (Febbo,
2019). Even though recent advances in formulating and solving
nonlinear optimal control problems address this challenge to a
certain extent (Wurts et al., 2021, 2022), a reliable real-time
performance is still an open research challenge.

Compared to nonlinear models, linear models offer greater ad-
vantage in terms of computational efficiency (Gros et al., 2020).
Typical linear models rely on constructing the system matrix
from the Jacobian. These kinds of models cannot maintain high
fidelity as the states move away from the point about which lin-
earization is performed and nonlinearities become significant.
This makes them less suitable for MPC as prediction horizons
need to become longer. Another track for building linear MPC
for vehicle control is to have an initial guess for the changing
states and use the average to replace the nonlinear terms (Turri
et al., 2013). This method increases the range of validity of the
model, but the accuracy relies on the initial guess.

The Koopman operator, which can generate globally linearized
models, has been adopted to increase model fidelity, as the

nonlinear model can be approximated better when the linear
state space is lifted to a higher dimension (Koopman, 1931).
Successfully applied to a variety of dynamic models, this
method offers a strong ability to interpret nonlinear models
as higher-dimensional linear ones (Mezić, 2013). To build this
invariant linear operator, Extended Dynamic Mode Decompo-
sition (EDMD) and Dynamic Mode Decomposition (DMD)
have been noted as popular tools (Williams et al., 2015). In
the automotive domain, researchers have adopted EDMD to
approximate Koopman operators in MPC formulations for ve-
hicle control. A linear vehicle model is developed by Cibulka
et al. (2019) using linear Koopman realizations to approximate
an ordinary bicycle model with slip ratio and steering angle
as control inputs. To further improve the model performance,
deep-learning based techniques are applied in the process to
determine the desired basis functions so that the state space
representation of the model can find a balance between model
fidelity and complexity (Han et al., 2020).

The standard Koopman operator faces a trade-off between
model fidelity and computational speed in MPC. On the one
hand, linear Koopman models can have fast computation speed
in MPC, but have low accuracy when the original states and
controls are coupled. On the other hand, nonlinear Koopman
models can be more accurate for modeling, but they result in
nonlinear MPC, which is computationally less efficient. Bi-
linear models constructed by Bruder et al. (2021) through the
bilinear Koopman realization aim to address this trade-off fun-
damentally. A bilinear model enjoys computational efficiency
to some extent. However, few work has been done in the field
of bilinear optimal control. Cebuhar and Costanza (1984) and
Aganovic and Gajic (1994) deduced an iterative process of
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unconstrained bilinear optimal control based on Lyapunov’s
second method and the Hamilton-Jacobi equation, respectively.
Halperin et al. (2020) extended the problem to Krotov’s method
with constraints in control inputs. However, no state constraints
are involved in current bilinear optimal control frameworks,
which makes this strategy infeasible for controlling a vehicle.

To address this gap, this paper approximates the bilinear Koop-
man model further by keeping the coupling state value constant
during the prediction to form a linear model. This approxima-
tion is then incorporated with constraints and maintains high
computational efficiency along with high fidelity in linear MPC.

The original contributions are summarized as follows:

(1) A bilinear Koopman based vehicle dynamics model that
takes the control-affine dynamics into account.

(2) A strategy to linearize the bilinear Koopman model by
approximating the coupling state as constant in the pre-
diction horizon.

(3) A comparison between the fidelity of the bilinear Koop-
man model, linearized bilinear Koopman model, linear
Koopman model and locally linear model to show the
importance of the control-affine dynamics.

(4) A linear MPC framework using the linearized bilinear
Koopman model as the prediction model for simultaneous
planning and control in autonomous driving, with compar-
isons to state-of-the-art nonlinear and linear approaches.

2. VEHICLE DYNAMICS

A 3-degrees-of-freedom (DOF) bicycle model with linear tire
forces is used as the original nonlinear vehicle model to provide
a large set of simulated data. This model is widely used in MPC
formulations due to its balanced simplicity and fidelity (Liu
et al., 2016), and is thus adopted here, as well.

The state and control vectors of the model are defined as:

ξ :=


x
y
r
v
ψ
u

 =


global x position of CG
global y position of CG

yaw rate
lateral speed

yaw angle
longitudinal speed

 (1)

ζ :=

[
ax
δf

]
=

[
longitudinal acceleration
front tire steering angle

]
(2)

The vehicle model follows the dynamics expressed as:

ξ̇ = A(ξ) +Bζ (3)
where

A(ξ) =


u cosψ − v sinψ
u sinψ + v cosψ

(FyfLf − FyrLr)/Izz
(Fyf + Fyr)/M − ur

r
0

 (4)

BT =

[
0 0 0 0 0 1
0 0 0 0 0 0

]
(5)

Here, Fyf and Fyr are the lateral forces acting on the front
and rear tires. M is the vehicle mass, Izz is its yaw moment
of inertia. Lf and Lr are distances from the center of gravity
(CG) to front and rear axles, respectively.

In this model, the vehicle vertical load is needed to calculate
the lateral tire forces. The front and rear vertical loads Fzf and
Fzr are considered as steady state forces as:

Fzf =
MLfg

Lf + Lr
(6)

Fzr =
MLrg

Lf + Lr
(7)

where g is the acceleration of gravity. The front and rear cor-
nering stiffnesses Cαf

and Cαr
are linear coefficients derived

from the linear region of the Pacejka magic formula (Pacejka,
2005). The front and rear tire slip angles αf , αr and the lateral
forces Fyf , Fyr are calculated as:

αf = arctan

(
v + Lfr

u

)
− δf (8)

αr = arctan

(
v − Lrr

u

)
(9)

Fyf = Cαf
Fzfαf (10)

Fyr = CαrFzrαr (11)

3. KOOPMAN OPERATOR

Let F denote the nonlinear function of the bicycle dynamics.

ξ̇(t) = A(ξ(t)) +Bζ(t) = F(ξ(t), ζ(t)) (12)
Let F be an infinite-dimensional function space composed of
all square-integrable real-valued functions. Each element f ∈
F is called an observable. In F, the time evolution of each
observable is characterized by the Koopman operator K.

Kf(ξ(t), ζ(t)) =
∂f

∂ξ

dξ

dt
=
∂f

∂ξ
F(ξ(t), ζ(t)) (13)

The model realization is fulfilled by approximating the Koop-
man operator in a finite dimensional subspace. The approxima-
tion is based on the Extended Dynamic Mode Decomposition
(EDMD) algorithm developed by Williams et al. (2015). Let
Φ(•) be the lifting function, which transforms the original state
space and control space into the Koopman operator subspace.

p(n) = Φ
(
ξ(n)(t), ζ(n)(t)

)
q(n) =

d

dt

(
Φ(ξ(n)(t), ζ(n)(t)

)
=

Φ
(
ξ(n)(t+∆t), ζ(n)(t+∆t)

)
− Φ

(
ξ(n)(t), ζ(n)(t)

)
∆t

(14)

where n ∈ {1, 2, . . . N} denotes the index of sampling, p(n) de-
notes the lifted vector in the subspace from nth sampling data,
and q(n) denotes the corresponding time derivatives of p(n).
Given the N samplings and their lifted values, the subspace of
the Koopman operator is linearly regressed as

min
K

∥KP−Q∥2F (15)

P =
[
p(1) p(2) · · · p(N)

]
(16)

Q =
[
q(1) q(2) · · · q(N)

]
(17)

with the resulting optimizer
K∗ = QP† (18)

where K∗ is the approximated continuous Koopman operator,
P and Q are the matrices horizontally stacking all p and q,
respectively, and † denotes the Moore pseudo inverse of a
matrix.

3.1 Linear Koopman Model Realization

Common Koopman realization constructs linear models by lift-
ing the model to a finite degree as an approximation of infinite
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dimensional Koopman operators. Linear Koopman realization
creates a linear model that only lifts the state space. The lifting
process of the linear Koopman realization for the vehicle states
except for x and y is given as:

βj(ξ, ζ)
Nβ

j=1 ∈

{
6∏
i=3

ξρii

∣∣∣∣∣
6∑
i=3

ρi ≤ ρ, ∀ρi ≥ 0

}
(19)

where Nβ is the dimension of subspace where only the original
states are lifted. The global position x and y are not lifted
due to their absence when calculating the derivatives of other
states. The strategy is to lift the basis function ξ to higher order
polynomials. β(ξ, ζ) are basis functions where the polynomial
order is less than or equal to a pre-defined degree ρ. Then, the
linear finite dimensional subspace ΦL is derived as follows by
augmenting the global position x, y at the beginning and the
control inputs ζ at the end:

ΦL =
[
x y β1(ξ, ζ) · · · βNβ

(ξ, ζ) ζT
]T

(20)

3.2 Bilinear Koopman Model Realization

Bilinear systems have the form

˙̃
ξ = Ãξ̃ + B̃ζ̃ +

ñ∑
j=1

ξ̃jÑj ζ̃ (21)

where ξ̃ ∈ Rñ×1, ζ̃ ∈ Rm̃×1, Ã ∈ Rñ×ñ, B̃ ∈ Rñ×m̃.
Ñj ∈ Rñ×m̃ is a constant matrix that defines the coefficients
in the control affine terms, j is the index of the states, and m̃
and ñ are the number of control inputs and states in the lifted
space, respectively. The difference between a linear model and
a bilinear one is the control-affine dynamics defined as the
last term. The bilinear Koopman realization is constructed in
a similar way to Sec. 3.1; the difference is that instead of
directly augmenting the control inputs, the formulation further
considers the control-affine dynamics in ΦB . This is expressed
as:

ΦB = [ΦB,ξ ΦB,ξζ1 ΦB,ξζ2]
T (22)

ΦB,ξ = [x y β1(ξ, ζ) · · · βNβ
(ξ, ζ)]

T (23)

3.3 Sampling Strategy

For the training sets, 5000 trajectories are simulated from
the original vehicle model described in Sec. 2. The sampling
horizon is defined as 0.01s. Each trajectory is simulated with
uniformly distributed randomized initial conditions and control
inputs where the bounds are set as the same with Sec. 4.2.

ξmin ≤ ξ(t) ≤ ξmax (24)
ζmin ≤ ζ(t) ≤ ζmax (25)

By stacking the values of state evolutions and control inputs,
the values of P and Q are calculated through the steps given
above.

4. MODEL PREDICTIVE CONTROL

This section describes the formulation of a single-layer MPC;
i.e., one that solves the planning and control problems simulta-
neously. The control inputs in each receding horizon are gener-
ated based on the optimal control problem (OCP):

minimize
ξ, ζ, tf

J =

∫ tf

0

I[ξ(t), ζ(t)]dt (26)

subject to ξ̇(t) = V[ξ(t), ζ(t)] (27)
ξmin ≤ ξ(t) ≤ ξmax (28)
ζmin ≤ ζ(t) ≤ ζmax (29)

where J is the cost function, I is the function that contains the
cost terms on states and controls, and V is the vehicle dynamics.
In the simulations, the locally linearized, the nonlinear and
the linearized bilinear models are implemented for comparison.
The prediction horizon Np is set to 3s, the control horizon Nc
is 0.5s, and the sampling horizon Ns is 0.1s.

4.1 Linearization of the Bilinear Model

The bilinear model itself is a nonlinear model due to the
control-state coupling term. To transform the bilinear form in
(21) into a linear form, the values of states in the control-affine
term are kept constant within each receding horizon at its initial
value, and a linear form is obtained as follows:

˙̃
ξ = Āξ̃ + B̄ζ̃ = Ãξ̃ + [B̃ +

ñ∑
j=1

ξ̃j(0)Ñj ]ζ̃ (30)

where Ā, and B̄ are the linearized forms of state matrices,
and ξ̃j(0) is the initial value of the jth element in ξ̃ in each
receding horizon. Compared to the locally linearized model, the
linearized bilinear Koopman model can offer higher accuracy
due to the lifted space. Its advantage over the linearized Koop-
man model is its accounting for changing states in the bilinear
term at the beginning of each receding horizon.

4.2 Control and State Constraints

The bounds of control inputs are determined to meet the limits
of the actuators on the vehicle. The control constraints of (29)
are expanded as:

δfmin
≤ δf ≤ δfmax

(31)
axmin

≤ ax ≤ axmax
(32)

The vehicle states are constrained through linear state con-
straints as follows:

ymin ≤ y ≤ ymax (33)
ψmin ≤ ψ ≤ ψmax (34)
umin ≤ u ≤ umax (35)

To reach a collision-free trajectory, the drivable tube concept of
Wurts et al. (2021) is used to prevent the vehicle from entering
hazardous zones. The drivable tube is defined for the vehicle
CG position; i.e., as long as the CG stays in the drivable tube,
the trajectory is deemed collision free.

4.3 Plant Model

In the simulations, the vehicle model in Sec. 2 is utilized
as the plant model. The rationale for this choice instead of
using a higher fidelity plant model is twofold: (1) to create
a controlled experiment by avoiding model discrepancies, so
that the performance differences between the proposed and
benchmark MPC formulations can be studied in isolation; and
(2) to create a best-performance benchmark with nonlinear
MPC using identical plant and prediction models.

4.4 Cost Function

The cost function is formulated as

J =

∫ tf

t0

(
wδf δf (t)

2 + waxax(t)
2 + wyϵy(t)

2 + wψϵψ(t)
2
)
dt

(36)
where wδf , wax , wy , wψ are weights corresponding to each
term. The first and second terms minimize the control efforts.
The third term minimizes the lane keeping error as captured
by the y-position error and the last term minimizes the heading
error of the vehicle.
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Fig. 1. Number of basis functions used in lifting for Koopman operator based
bilinear systems
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Fig. 2. Normalized root mean square error (ϵ̃mρ ) in vehicle states. The RMSE
is normalized based on the performance of the bilinear system of degree
ρ = 1.

5. RESULTS

5.1 Model Fidelity

As described in Sec. 3.1, a pre-defined polynomial degree ρ
needs to be set to determine the finite dimensional subspace
Φ. As the degree ρ increases, the dimension of the Koopman
operator explodes as shown in Fig. 1.

An increasing number of basis functions suggests higher com-
putational burden both on training and control, whereas a small
number of basis functions cannot capture the nonlinearities
well. To find a balance, 100 testing scenarios are formulated
in the same way as shown in Sec. 3.3, but with completely
different initial states and control inputs. From (4) and (5), the
derivative of longitudinal speed u is already a linear combina-
tion of control inputs. Thus, the discussion of errors in this term
is of no use. Consequently, four kinds of errors are studied in
the testing: global position (x,y), yaw angle ψ, yaw rate r and
lateral speed v. Root mean square error (RMSE) is applied to
the four errors denoted as ϵxyρ , ϵrρ, ϵvρ and ϵψρ . A normalization is
applied as

ϵ̃mρ =
ϵmρ
ϵm1

∀ρ ∈ {1, 2, · · · , 7} (37)

where m is a placeholder for the four error metrics.

In Fig. 2, four normalized RMSEs are plotted. The error in
global position keeps decreasing as the degree increases, be-
cause the higher dimensional polynomials can better fit the sin
and cos functions. The errors in yaw angle and yaw rate nearly
reach the minimum at ρ = 5. The increase in their errors for
ρ > 5 is attributed to over-fitting, which assigns improper
weights on the high degrees. Judging from the overall perfor-
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Fig. 3. Normalized root mean square error (NRMSE) on vehicle states. The
RMSE of each scenario is normalized based on the performance of the
Bilinear Koopman system under 0.25s refreshing time.

mance and the computational efficiency, a degree of ρ = 5
is chosen to construct the bilinear and the linearized bilinear
systems.

A comparison of model fidelity is shown in Fig. 3. The re-
freshing time is the time interval when the error of states are
corrected to zero. In this comparison, four types of models are
constructed:

(1) BK system: Bilinear Koopman system with degree ρ = 5.
(2) LL system: Locally linearized system described in (38).

This serves as a non-lifted benchmark.
(3) LK system: Linear Koopman system described in Sec. 3.1.
(4) LBK system: Linearized bilinear Koopman system in

(30).

ξ̇ = F (ξ(t0), ζ(t0)) +
∂F

∂ξ(t)

∣∣∣∣
t=t0

(ξ − ξ(t0))

+
∂F

∂ζ(t)

∣∣∣∣
t=t0

(ζ − ζ(t0))

(38)

The four errors are then normalized based on the error of the
BK system under 0.25s refreshing time:

ϵ̃ml,t =
ϵml,t

4ϵmB,0.25
∀t ∈ {0.25, 0.5, · · · , 2.5} (39)

where l is a placeholder for the four systems (BK, LL, LK and
LBK). The testing sets are kept consistent with the ones used to
determine the system degree.

In Fig. 3, the four normalized errors are summed to obtain the
total normalized RMSE, to which then a natural logarithm is
applied. The BK system and the LBK system have compatible
performance due to their accuracy in predicting yaw rate r and
lateral speed v. The divergence shown between the two systems
after 1s is due to the unchanged state values in control-affine
dynamics in (30).

In Table 1, the normalized RMSEs are listed for each error
using the same metric as Fig. 3 with 0.5s and 1.5s refreshing
time. The BK and LBK models provide good global lineariza-
tions, as the errors accumulate only slowly as the refreshing
time increases, whereas errors in LL increase dramatically. The
LK model has the largest errors in all scenarios due to the lack
of consideration of control-affine dynamics.

A notable difference between the LBK and BK models lies in
the prediction of global position when refreshing time is 1.5s,
where the LBK model is 3 times worse than the BK model.
The fixed state values in control-affine terms miss the details
in dynamics, but the formulation can still capture the overall
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Table 1. Normalized root mean square error (NRMSE) of
vehicle states under 0.5s and 1.5s refreshing time

ϵ̃(x,y) ϵ̃v ϵ̃r ϵ̃ψ

BK model (0.25s) 0.25 0.25 0.25 0.25
BK model (0.5s) 0.49 0.26 0.26 0.51

LBK model (0.5s) 0.53 0.15 0.29 0.36
LL model (0.5s) 3.78 13.32 5.04 8.56
LK model (0.5s) 21.93 30.54 17.48 20.03
BK model (1.5s) 1.36 0.26 0.26 1.17

LBK model (1.5s) 3.69 0.24 0.44 1.49
LL model (1.5s) 35.78 30.23 10.09 62.06
LK model (1.5s) 74.31 54.15 23.91 75.50
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Fig. 4. Vehicle states under different controllers and refreshing time of 1.5s

trend of dynamics evolution. Fig. 4 demonstrates an open-loop
simulation, where the steering angle commands are given as

δf = δfmax cos(k1)e
−k2 (40)

where k1 ∼ U(0.02, 0.05) and k2 ∼ U(10−2, 10−3) are uni-
formly distributed random variables, and the acceleration com-
mands are given as Gaussian distributed (ax ∼ N(0, 3) m/s2)
random numbers within the control bound. In the testing, the
refreshing horizon is given as 1.5s and the simulation runs
for 5s. The ground truth trajectory is obtained by feeding the
control signals to the model in Sec. 2. From the plots, the LK
model deviates from the ground truth while the LL model can
maintain high fidelity for approximately 0.5s before exhibiting
errors. The LBK model does not create noticeable discrepancies
from the BK model and aligns closely with the ground truth.

Based on these observations, the LBK system shows good
potential as a prediction model in MPC, which is studied next.

5.2 MPC

Three controllers are tested to gain insight into the control per-
formance that the LBK model can produce. The nonlinear MPC
(NL MPC) and LL model based MPC (LL MPC) are utilized
as benchmarks for the LBK model based MPC (LBK MPC).
The LBK MPC and LL MPC are solved through quadratic pro-
gramming. The NL MPC uses the midpoint collocation method,
which is solved through CasADi (Andersson et al., 2019) using
IPOPT (Wächter and Biegler, 2006). All simulations are run in
Matlab 2020b with the same settings.

The scenario is designed such that the vehicle needs to perform
evasive maneuvers before completing a lane change to the right
(y = 0). Two experiments are conducted as follows.

In the first experiment, three hazard zones are placed at x ∈
[21 , 30] ∪ [60 , 70] ∪ [100 , 120] as seen in Fig. 5 and Fig. 6.

Fig. 5. Vehicle paths for low speed case

Fig. 6. Vehicle paths for high speed case

Table 2. Randomized scenario setting

High Speed Low speed
u0 [21 , 23] m/s [13 , 17] m/s
xh,1 [22 , 25] m [27 , 30] m
dh [35 , 38] m [40 , 45] m

The initial states are set as ξ0 = [0 3.6 0 0 0 u0]
T , where two

initial speeds of u0 = 15m/s and u0 = 26m/s are considered as
low and high speed examples.

Results are shown in Fig. 5 and Fig. 6 for the low and high
speed cases, respectively. When the speed is low, LL MPC
and LBK MPC produce nearly identical responses. However,
in the high speed case, LL MPC fails to turn the vehicle in time
and hits the second hazard, while the LBK MPC successfully
produces a safe maneuver. This contrast shows the necessity
of consideration of nonlinearities in the prediction model in
extreme maneuvers and the LBK model’s ability to do so. In
both cases, the NL MPC has the lowest cost as expected.

Next, the maximum initial speeds are increased for each con-
troller until the plant model hits an hazard. For both NL MPC
and LBK MPC, the maximum initial speed is recorded as
26.2m/s, while it is noted as 22.6m/s for the LL MPC. Despite
the cost difference, LBK MPC is still capable of pushing the
vehicle to the limit. To gain further confidence in the insights
from this experiment, a statistical analysis is done next to test
the generalizability.

The second experiment offers a statistical perspective. Two
hazard zones are used, namely, the first two hazards of the first
experiment. The length of both hazard zones are modified to
10m. The widths and the y positions of the openings in hazard
zones are constant and the same as the first experiment. The x
position of the first hazard zone xh,1, and the distance between
the first and second hazard zone dh complete the description
of the configuration of two hazard zones. Two speed ranges are
considered to capture high and low speeds. For each case, the
range of xh,1, dh, and the initial speed u0 are specified in Table
2. Each case is randomized as a Latin hypercube of 50 samples.
The result is plotted in Fig. 7.

Because comparing the costs across scenarios is not meaning-
ful, the cost of NL MPC is treated as benchmark, based on
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Fig. 7. Statistical performance analysis for the three controllers. The whiskers
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which the other two controllers are normalized. In the first test,
the LL MPC has about 10.3% higher cost than the LBK MPC,
whereas the NL MPC is 7.7% lower. This shows that the LBK
MPC better controls the vehicle than LL MPC when the vehicle
is near the limits. In the second test, the three controllers all per-
form similarly as indicated by the negligible cost difference. As
for the computational cost, the solve time difference between
LL MPC and LBK MPC is only 4ms on average and they are
both one order of magnitude smaller than the NL MPC with
133ms average solve time.

6. CONCLUSION

This work presents an MPC formulation with a bilinear Koop-
man operator based vehicle model for real-time trajectory plan-
ning for autonomous driving. A bilinear Koopman realization
for the vehicle dynamics is presented first by transferring the
original nonlinear model to a bilinear one by lifting the states to
a higher dimension. By keeping the initial states for the control-
affine term constant at the beginning of the prediction horizon,
the model is further reduced to a linear one. The bilinear model
and the linearized bilinear model are shown to have higher
accuracy compared to the locally linearized model and the
linear Koopman model that neglects control-affine dynamics.
The linearized bilinear model is then utilized in an emergency
steering simulation scenario. The new model, albeit still a linear
one, represents the nonlinear plant well and outperforms the
locally linearized model when the vehicle is operated at a higher
speed. Additionally, benefiting from its linear form, the compu-
tation time is decreased by one order of magnitude compared
to the original nonlinear vehicle dynamics in a nonlinear MPC
formulation. This acceleration in optimization with minimal
compromise in performance is an important step for real-time
applications.

Directions for extension of this work are noted as follows. Gen-
erating a more accurate bilinear model from a higher fidelity
model to increase the operating region could be of interest.
Model reduction and basis selection techniques can be inves-
tigated in constructing the bilinear Koopman model. Stability
analysis and experimental validation of the proposed formula-
tion are also important next steps.
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