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Abstract: Modern Positioning, Navigation, and Timing (PNT) systems heavily rely on Global
Navigation Satellite Systems (GNSS). Meanwhile, GNSS-based PNT systems are increasingly
becoming susceptible to unintentional and deliberate Radio Frequency (RF) interference. In
particular, as technology keeps advancing and hardware is becoming so inexpensive, it takes
a modest effort to disrupt the normal operation of almost any PNT systems, thus posing
an extreme threat to autonomous transportation systems that rely on precise PNT. As
communication capabilities are expanding, a group of vehicles can easily share data when they
operate in close vicinity. This gives opportunity to position and navigate the vehicles based
on a jointly computed navigation solution, which is usually called collaborative navigation,
resulting in a potentially more accurate and reliable operation. In this study, the feasibility and
performance potential of collaborative navigation on the detection and mitigation of GNSS-
based PNT system operational anomalies are evaluated on some real data and simulated
anomaly scenarios. By incorporating an outlier detection method based on least squares
adjustment, the collaborative navigation has shown to be able to maintain the differences to the
reference solution to within 0.2 m, 0.5 m, and 3.0 m for the biased case, noisy case, and anchor
case, respectively, for all test vehicles.

Keywords: Cooperative navigation, Localization, Positioning Systems, Fault Detection,
Information and sensor fusion.

1. INTRODUCTION

Modern Positioning, Navigation, and Timing (PNT) sys-
tems heavily rely on Global Navigation Satellite Systems
(GNSS). Meanwhile, GNSS-based PNT systems are in-
creasingly becoming susceptible to unintentional and de-
liberate Radio Frequency (RF) interference. In particular,
as technology keeps advancing and hardware is becoming
so inexpensive, it takes a modest effort to disrupt the
normal operation of almost any PNT systems, thus posing
an extreme threat to autonomous transportation systems
that rely on precise PNT.

Finding protection against any interference to PNT sys-
tems is happening on multiple levels. Modernization of
Global Positioning System (GPS) has introduced new sig-
nals to provide significant capabilities to increase protec-
tion at signal and receiver level. In parallel, the prolifera-
tion of GNSS systems in the past decade has substantially
increased the signal availability, so PNT systems using all
the potentially available signals can exploit the benefits of
redundancy. Nevertheless, there are limits on what can
be done against RF interference in PNT systems, and
therefore, using totally independent sensor technologies
is mandatory to detect malfunctioning and potentially
offering mitigation to some extent.

As communication capabilities are expanding, a group of
vehicles can easily share data when they operate in close
vicinity. This gives opportunity to position and navigate
the vehicles based on a jointly computed navigation so-
lution, resulting in a potentially more accurate and reli-
able operation. This method, usually called collaborative
navigation (or cooperative navigation), is considered here
for detecting any malfunctioning of a GNSS-based PNT
system, such as hardware problem, jamming or spoofing.

1.1 RF interference and mitigation

RF interference has become a serious threat to the GNSS
navigation systems. Even though the GNSS signals have
been designed to withstand a certain level of interference
through Direct Sequence Spread Spectrum (DSSS) tech-
nique, they are so weak at the receiving end on Earth
that most modern electronic equipment interferes with
them at close range (Humphreys, 2017). The open GNSS
signals to civil users are especially vulnerable due to their
open structure and lacking encryption and authentication
(Gao et al., 2016; Humphreys, 2017). The jamming, either
unintentional or deliberate, will block the genuine GNSS
signal from being tracked. The spoofing fools the receivers
with counterfeit signal to produce precise but erroneous
solution (Humphreys, 2017).
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The effects of simple spoofing attacks on GNSS receivers
integrated in Android smartphones are investigated in
(Rustamov et al., 2020). A portable spoofer was developed
with a Software Defined Radio (SDR) and a low cost
front-end. The spoofer was placed within 1-3 m from the
test smartphones under open sky. It broadcast spoofing
signals over GPS L1 band as if received one day ago at
a different location that was 144 km away. The carrier-
to-noise density ratio (C/N0), Automatic Gain Control
(AGC), and time of signal transmission and reception from
the test smartphones were analyzed. The results show that
during the spoofing period, tracking of the real signals
from low elevation satellites is lost; the fake signal is
not acquired but the real signals of satellites with the
same satellite vehicle identification number as the fake
satellite is lost too. The position outputs deviate a few
meters during spoofing that is blamed to loss of lock to
some GPS satellites. Actually, the test smartphone uses a
multi-constellation GNSS chip that has been claimed to be
able to reach 30 cm accuracy in open environment (Moore,
2017).

Varying methods to protect GNSS receivers from jamming
and interference are summarized in (Gao et al., 2016) into
four main categories: inertial aiding, spatial filtering, time-
frequency filtering, and vector tracking. Deep integration
of Inertial Navigation System (INS) and GNSS will im-
prove jamming-to-signal (J/S) ratio, system accuracy, and
high dynamic performance. Spatial filtering uses antenna
arrays to point the receiver antenna beam towards the
GNSS satellites and away from jammers. Time-frequency
filtering methods are based on GNSS signal conditioning
and filtering. Vector tracking achieves enhanced tracking
robustness under degraded conditions by utilizing the fact
that signal channels are coupled through the shared re-
ceiver states of position, velocity, and time. Inertial aiding
and vector tracking improve the receiver robustness by
lowering the minimum required C/N0 level for receiver
acquisition and tracking; whereas, the incident interfering
signals are suppressed before entering the receiver in the
spatial and time-frequency filtering approaches (Gao et al.,
2016).

1.2 Collaborative navigation

Collaborative Navigation entails a concept of a group of
platforms, referred to as network nodes, navigating collec-
tively (as a network) and supporting each other’s position-
ing solution to obtain higher accuracy and availability for
all platforms. Early works have been focused on integrat-
ing the inter-nodal range/bearing measurements or locally
generated maps (Roumeliotis and Beke, 2002; Bryson and
Sukkarieh, 2009; Grejner-Brzezinska et al., 2009). In fact, a
similar concept, community relative navigation, was stud-
ied before GPS was established, and can be traced back
at least to the 1970s (e.g., Rome and Stambaugh, 1977;
Widnall and Gobbini, 1982; Schneider, 1985).

Recent technology advancements have made the inter-
nodal measurements, especially the range measurements,
more accurate and affordable than before. Inter-nodal
range can be measured with a radio signal in a wireless
sensor network through RSS (Received Signal Strength),
TOA (Time of Arrival), TDOA (Time Difference of Ar-

rival), and AOA (Angle of Arrival) techniques, or with op-
tical sensors through computer vision techniques (Grejner-
Brzezinska et al., 2009). Among them, Ultra-Wide Band
(UWB) ranging technology, with a broad bandwidth avail-
able for time transfer and centimeter level ranging ca-
pability, is of particular interest to positioning and nav-
igation applications (MacGougan et al., 2009). Moreover,
the UWB transceivers mounted on the nodes form an
ad-hoc network that can provide a datalink among the
nodes without any additional infrastructure and aid the
INS/GNSS solution by giving accurate inter-nodal range
measurements (Vydhyanathan et al., 2009).

The benefits of cooperative navigation have been demon-
strated through simulation in (Grejner-Brzezinska et al.,
2009). The result shows that, for repeated 60-second GPS
gaps, separated by 10-second signal availability, coopera-
tive navigation can maintain the accuracy at 1-2 m level
for nodes only equipped with consumer grade Inertial Mea-
surement Unit (IMU). In the simulation, a decentralized
Extended Kalman Filter (EKF) was used to integrate
all the measurements. Similar research is presented for
cooperative navigation concept verification prototype in
(Vydhyanathan et al., 2009), in which all nodes were
equipped with GPS, Micro-Electro-Mechanical Systems
(MEMS) inertial sensors, barometric altimeter, and UWB
transceiver. The results show that with UWB aiding, a
horizontal position accuracy of ±0.5 m, horizontal velocity
accuracy of ±0.28 m/s, and orientation accuracy of ±0.3◦

for roll and pitch and ±6.3◦ for heading were obtained
for the mobile node during several second GPS outages
(Vydhyanathan et al., 2009).

An outlier detection algorithm for collaborative navigation
is presented in (Xiong et al., 2021). The algorithm models
the GNSS measurements and inter vehicle range measure-
ments into common and specific parts and excludes the
faulty measurements with a greedy search strategy. The
test results show the algorithm has a better detection
of GNSS faults than tradition Receiver Autonomous In-
tegrity Monitoring (RAIM) and good sensitivity to the
faulty UWB range measurements.

1.3 Contributions

This study investigates the detection and mitigation of
GNSS-based PNT system operational anomalies on indi-
vidual vehicles in the context of collaborative navigation.
The contributions can be summarized as follows.

(1) Establishment of a framework for collaborative navi-
gation to integrate individual vehicle’s GNSS or INS
solutions, inter-vehicle ranges, and ranges to infras-
tructures.

(2) Demonstration of the effectiveness of collaborative
navigation in detecting and mitigating PNT system
operational anomalies on individual vehicles in post
processing mode.

(3) Utilization of a least squares adjustment based
method for outlier detection in collaborative naviga-
tion.

(4) Analysis of the theoretic limitation of the “anchor”
concept that relies on the navigation solution of an
anchor vehicle and ranges to other vehicles.
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2. METHODOLOGY

This study adopts centralized EKF to integrate GNSS or
INS solutions of individual vehicles and range measure-
ments among vehicles and from a vehicle to beacons along
the road. A least squares adjustment based method is used
to detect outliers in GNSS or INS solutions of individual
vehicles before the EKF measurement update.

2.1 Collaborative navigation based on range measurements

The range measurement is a function of the positions of the
vehicles involved. After linearization, it has the following
form.

rij,t − r0ij,t = [J ,−J ][xi,xj ]T + eij,t, (1)

where rij,t is the range between vehicle i and j at epoch
t, r0ij,t is the computed range from the approximate coor-
dinates, J is the Jacobian coefficient vector, [xi, xj ] are
(unknown) correction vector to the approximate coordi-
nates of the ith and jth platforms, and eij,t is the error
term.

The collaborative navigation can be implemented in a
central Extended Kalman Filter (EKF), in which the com-
munication and range measurements between the vehicles
are assumed. The centralized architecture allows near-
optimal behaviors in well-understood environments. The
state model can be described as follows.

xk = Φk,k−1xk−1 +Gkwk, wk ∼ N (0, Qk), (2)

where xk is the state vector, Φk,k−1 is the state transition
matrix, wk is a Gaussian, zero-mean, white noise vector
with a covariance matrix of Qk, k and k − 1 are time
instants.

The linearized observation model is as follows.

yk = Hkxk + vk, vk ∼ N (0, Rk), (3)

where the observation vector yk may include the GNSS or
INS solutions of individual vehicles as well as Vehicle to
Vehicle (V2V) and Vehicle to Infrastructure (V2I) ranges,
Rk is the variance of the observation error vector vk.

Following (Jekeli, 2001), the EKF solution can be ex-
pressed in the following equations.

x̂−
k = Φk,k−1x̂k−1, (4)

P−k = Φk,k−1Pk−1ΦT
k,k−1 +GkQkG

T
k , (5)

γk = yk −Hkx̂
−
k , (6)

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1, (7)

x̂k = x̂−
k +Kkγk, (8)

Pk = (In −KkHk)P−k (In −KkHk)T +KkRkK
T
k , (9)

where x̂−
k is the a priori expected value of the state vector,

P−k is the error covariance of the expected state, γk is the
innovation vector,Kk is the Kalman Gain matrix, x̂k is the
a posteriori estimate of the state after the measurement
update, and Pk is the a posteriori covariance of the state
vector.

2.2 Least squares adjustment based detection method

Generally, the innovation vector as in equation (6) in
EKF is exploited to detect the measurement faults, as the

normalized-innovation-squared test statistic employed in
(Maaref et al., 2018; Zhu et al., 2020; Xiong et al., 2021).
Meanwhile, it is found in the study that the innovation
based method has higher false alarm rate for the same
detection threshold. Hence, least squares adjustment is
adopted to detect any anomalies in individual vehicle’s
GNSS or INS solutions in collaborative navigation.

There is a rank deficiency problem in least squares adjust-
ment based on range measurements only. As an example,
to localize a quadrilateral from lengths among its corners
on a plane, the rank deficiency is three. There are some
methods to solve the rank deficiency problem. A straight-
forward one would be reducing the number of unknown
parameters, that is, treating the GNSS or INS position of
some vehicles as known and removing the corresponding
corrections from the parameter list. This method will be
used in the anchor case later for cross validation. The issue
with the method is there will be no chance to detect any
errors in those GNSS or INS positions in collaborative
navigation.

Among some other methods, Minimum Norm Least
Squares Solution (MINOLESS) is selected in this study
because the solution norm is minimized among all possible
(biased) solutions. The adjustment method can be de-
scribed with the following equations (Schaffrin and Snow,
2017).

y = A
n×m

ξ + e, e ∼ (0, σ2
0P
−1), rk(A) < {m,n}, (10)

E
n×m

ξ = 0,with AET = 0, R(AT )
⊥
⊕R(ET ) = Rm, (11)

N = ATPA, (12)

c = ATPy, (13)

ξ̂ = (N + ETE)−1c, (14)

D{ξ̂} = σ0
2(N + ETE)−1N(N + ETE)−1, (15)

where the rank of the coefficient matrix A is less than its
dimension (n,m). With the introduction of “inner datum
constraints” in equation (11), the columns of ET form a
basis for the nullspace of A, and the orthogonal direct sum
of rangespaces of AT and ET is in the m-dimensional real
space Rm. Equation (14) and (15) represent the estimate
of parameters and its covariance, respectively.

Locations derived from the least squares adjustment are
then compared to GNSS or INS solution of individual
vehicles against a threshold to detect any anomalies.
The detected faulty GNSS or INS solution can then be
downweighted or simply excluded from participating in
the measurement update of EKF. Without the effects of
faulty GNSS or INS solutions of individual vehicles, the
collaborative navigation will be more accurate and reliable.

3. TEST DATASET

A real dataset was collected at a parking lot of The Ohio
State University and included four vehicles. The anchor
vehicle A was equipped with GNSS receivers, high-end and
MEMS IMU sensors, cameras, laser scanners, as well as
UWB transmitters to measure the ranges to other vehicles
and UWB beacons along the road. Three other vehicles, B,
C, and D, were equipped with GNSS receivers and multiple
UWB transmitters. The GNSS receivers were operating in
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standard point positioning mode. Two networks of UWB
devices independently measured the V2V ranges using
different channels. UWB transmitters on the right side
of the four vehicles formed Network 1 (NET1), whereas
the left side sensors formed Network 2 (NET2). Ten
UWB beacons were deployed along the road to enable
the range measurements from vehicle A to get the V2I
range measurements. The UWB beacons were regarded as
the infrastructure of the road and their locations had been
accurately surveyed. The vehicles were driven in formation
in the test with most of time A and B being side by side
and in the front, followed by C and D. Fig. 1 and Fig. 2
show the scene of data collection and a trajectory of the
anchor vehicle, respectively. More information about the
data collection campaign can be found in (Retscher et al.,
2020).

Fig. 1. The scene of data collection.
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Fig. 2. GNSS trajectory of vehicle A, UWB beacon loca-
tions, and the initial locations of the four vehicles.

A period of 42.6 seconds (214 epochs) of data were selected
for this study. As the UWB success rate was below 50%,
V2V ranges were simulated from GNSS solutions with a
standard deviation of 0.05 m. For the same reason, V2I
ranges were also simulated at the same level of accuracy
from the known locations of UWB beacons and vehicle A’s
GNSS solutions.

4. TEST RESULTS

Centralized integration architecture is adopted for this
study by assuming the GNSS solution of four vehicles as
well as the V2V and V2I range measurements are available
to a central EKF without any communication delay. GNSS
solutions of four vehicles, V2I ranges from A, and V2V
ranges among four vehicles are the measurements for the
EKF. The state vector includes two dimensional positions,
velocities, and accelerations of these four vehicles.

The least squares adjustment based detection method as
described above is used for the fault detection of GNSS
solutions of individual vehicles.

4.1 Collaborative navigation

The collaborative navigation results are depicted in Fig. 3
and 4 and are used as reference for the test scenarios dis-
cussed below. Since the GNSS solutions are from standard
point positioning, the differences between collaborative
navigation and GNSS solutions are at sub-meter level as
shown in table 1.
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Fig. 3. Trajectories of collaborative navigation solution.
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Fig. 4. Differences between collaborative navigation and
GNSS solution.

Table 1. Statistics of norms of differences be-
tween collaborative navigation and GNSS so-

lution [m]

Vehicle Min Max Mean Std.

A 0.14 0.74 0.58 0.07
B 0.16 0.72 0.58 0.06
C 0.17 0.70 0.58 0.06
D 0.14 0.71 0.58 0.07

Preprints, 2022 IFAC AAC
Columbus, Ohio, USA, August 28-30, 2022

288



4.2 Constant bias to one vehicle’s GNSS solution

As for a spoofing attack case like in (Rustamov et al.,
2020), a constant bias of 1.0 m is added to each component
of vehicle D’s GNSS solution starting from the 57th
epoch for 100 epochs, and then it is used to derive the
collaborative navigation with the other vehicles’ GNSS
solution as well as V2I and V2V ranges. As seen from
Fig. 5 and table 2, using the information of other vehicles
and the range measurements, the position error of vehicle
D has been restricted to less than 0.2 m. After the bias-
added periods, the solution gradually converged back to
the reference solution.
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Fig. 5. Differences between collaborative navigation for the
biased case and reference solution.

Table 2. Statistics of norms of differences be-
tween collaborative navigation for biased case

and the reference solution [m]

Vehicle Min Max Mean Std.

A 0.00 0.09 0.03 0.03
B 0.00 0.07 0.02 0.02
C 0.00 0.08 0.02 0.02
D 0.00 0.11 0.03 0.03

Obviously, any added biases larger than 1.0 m in GNSS
solutions will be detected with precise inter-vehicle range
measurements.

4.3 Noisy GNSS solution of one vehicle

To investigate the situation that the GNSS receiver pro-
duces noisy positioning results due to interference, random
noise with zero mean and variance of 1.0 m is added to
each component of the GNSS solution of vehicle D. The
collaborative navigation solution for this case is presented
in Fig. 6 and table 3. The collaborative navigation clearly
helps decrease the position error for vehicle D with the
maximum 2D distance to the reference solution being
below 0.5 m. Comparing to the result of the constant bias
case above, the increased noise level creates challenges for
detecting and mitigating GNSS anomalies.

In the meantime, if decreasing the weight of D’s GNSS
solution for the whole duration of the affected periods
before deriving the collaborative navigation, the offsets

of D’s solution can be controlled around 0.1 m, as shown
in Fig. 7 and table 4. Obviously, techniques in the RF
domain, such as C/N0 monitoring and received power
monitoring as in (Humphreys, 2017), should be combined
to detect and mitigate the anomalies for this case.
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Fig. 6. Differences between collaborative navigation for the
noisy case and reference solution.

Table 3. Statistics of norms of differences be-
tween collaborative navigation for noisy case

and the reference solution [m]

Vehicle Min Max Mean Std.

A 0.00 0.18 0.05 0.05
B 0.00 0.20 0.04 0.04
C 0.00 0.43 0.07 0.07
D 0.00 0.48 0.08 0.07
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Fig. 7. Differences between solution of always-
downweighting for noisy case and the reference
solution.

4.4 GNSS outages for three vehicles

In the presence of strong interference, most of the GNSS
receivers may lose tracking of the satellite signals and
produce no positioning results. There are some high-end,
interference resistant GNSS receivers, however, that may
still be able to position. This case is also investigated by
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assuming the GNSS solution is only available on vehicle
A and thus trying to derive the navigation solution for
the other vehicles with the V2V range measurements. The
results are plotted in Fig. 8 and tabulated in table 5, in
which it can be found that the differences to the reference
solution are less than 1.2 m for B and 3.0 m for C and D.
It demonstrates that the collaborative navigation can gen-
erate the navigation solution for the other three vehicles
during the outage periods, which is rather unreal in single
platform navigation without aiding from other sensors,
such as IMUs and odometers/speedometers. However, the
solution differences seem to be larger than expected at first
glance, considering the V2V ranges are simulated from the
GNSS solutions.

0 20 40 60 80 100 120 140 160 180 200

Epoch

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

D
iff

er
en

ce
 [m

]

X
A

Y
A

X
B

Y
B

X
C

Y
C

X
D

Y
D

Fig. 8. Differences between collaborative navigation for
anchor case and reference solution.

For cross validation, a least squares adjustment has also
been used to estimate the positions of the vehicles. In
the computation, the coordinate corrections of vehicle A
are excluded from the parameter list and the number
of unknowns is reduced to six. Meanwhile, as explained
before, the rank of the coefficient matrix A in equation (10)
is still rank deficient, which makes the estimation an ill-
posed problem. Accordingly, it is not a surprise to find
from Fig. 9 that the maximum differences of a single
coordinate component are close to 400 m.

Table 4. Statistics of norms of differences be-
tween always-downweighting solution for noisy

case and the reference solution [m]

Vehicle Min Max Mean Std.

A 0.00 0.05 0.01 0.01
B 0.00 0.04 0.01 0.01
C 0.00 0.06 0.01 0.01
D 0.00 0.08 0.01 0.02

Table 5. Statistics of norms of differences be-
tween collaborative navigation for anchor case

and the reference solution [m]

Vehicle Min Max Mean Std.

A 0.10 0.39 0.30 0.04
B 0.13 1.12 0.89 0.17
C 0.13 2.59 2.00 0.52
D 0.11 2.40 1.89 0.45

The difficulty in location estimation for the anchor case
can also be illustrated geometrically as in Fig. 10. Consider
rotating the quadrilateral ABCD about its corner A to
two different locations. The location of A has not changed,
neither have the lengths among all four corners, but
the locations of the other corners are totally different.
Therefore, for this anchor case, knowing the location of
the anchor vehicle and the V2V ranges is not adequate to
accurately determine the location of all vehicles.
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Fig. 9. Differences between adjustment for anchor case and
reference solution.
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Fig. 10. Rotating a quadrilateral around one corner A
won’t change the location of A and lengths to other
corners.

5. CONCLUSION

The feasibility and performance potential of collaborative
navigation on the detection and mitigation of GNSS-
based PNT system operational anomalies are evaluated
on some real data and simulated anomaly scenarios in this
study. The collaborative navigation is based on the GNSS
solution of four vehicles as well as ranges among vehicles
and from one vehicle to beacons along the road. A least
squares adjustment based method is used to detect outliers
in GNSS solutions before the EKF measurement update.

The effectiveness of collaborative navigation in detecting
and mitigating PNT system operational anomalies on
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individual vehicles are demonstrated in three simulated
cases.

For a simulated spoofing attack in which one vehicle’s
GNSS solutions are deviated 1.0 m constantly in all com-
ponents, collaborative navigation can keep the solution
differences to the reference solution from clean data to
below 0.2 m for all affected epochs.

For a simulated interference case with increased noise
level, by adding white noises with a variance of 1.0 m
to each component of one vehicle’s GNSS solution, the
vehicle’s total position difference to the reference solution
can be contained to below 0.5 m in collaborative naviga-
tion. If combining interference detection techniques from
RF domain, the navigation performance could be further
improved.

In the anchor case, it is simulated that all lower-end
receivers lose positioning capabilities due to strong inter-
ference and the collaborative navigation has to rely on the
GNSS solution of one anchor vehicle and V2V ranges. The
collaborative navigation can generate the navigation solu-
tion within 3.0 m differences to the reference solution for
the other three vehicles during the outage periods, which is
rather unreal in single platform navigation without aiding
from other sensors. However, due to the inherent defects of
rank deficiency, the solution cannot be accurately derived
in this case.
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