
A Fast Macroscopic Speed Planner for Electric Vehicle Platooning 

Cody Innis* and Pingen Chen** 

Department of Mechanical Engineering, Tennessee Technological University, Cookeville, TN 38505 

USA. (*e-mail: cjinnis42@tntech.edu; **e-mail: pchen@tntech.edu) 

Abstract: Electric vehicles (EVs) have demonstrated significant advantages of high fuel economy and low 

maintenance cost over gasoline-powered vehicles and hybrid electric vehicles in moving people and goods. 

However, range anxiety remains as one of the main barriers in market penetration for EVs. Platooning has 

proven to be an effective approach to reduce aerodynamic drag resistance and thus extend EV ranges. 

However, taking full advantage of platooning to reduce energy consumption during a trip while satisfying 

the time constraint is a challenge. This paper is focused on the design and validation of the high-level speed 

planner of a two-level real-time platooning framework for EVs. The speed optimization problem in the 

high-level speed planner for the entire trip is reformulated into two speed profile optimization problems in 

two processes: 1) catch-up and then platooning, and 2) platooning and then break-away. Analytical 

solutions are derived for the optimal speed profiles in both processes. The analytical solutions capture the 

impacts of critical parameters such as initial and final inter-vehicle distances, and the leading vehicle speed. 
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1. INTRODUCTION 

Electric vehicles (EVs) have been considered as a 
promising solution for reducing emissions and mitigating 
climate change. However, one of the biggest concerns with EVs 
is range anxiety due to limited battery capacity and limited EV 
charging stations. Improving vehicle efficiency via platooning 
is an effective approach to extend EV driving range during 
highway operation where high aerodynamic resistance is 
encountered. This slipstream effect of following another 
vehicle in short distances in a platoon can potentially reduce 
fuel consumption by up to 20%, Robinson et al (2010). Vehicle 
platooning has become more viable and implementable than 
before, as new vehicle models are commonly equipped with 
advanced driver-assistance systems (ADAS) such as adaptive 
cruise control (ACC). With additional vehicle-to-vehicle 
(V2V) communication devices, vehicles on highways can be 
implemented with cooperative adaptive cruise control (CACC) 
and platooning for both safety enhancement and energy saving. 
Although platooning opportunity is abundant on highways, 
planning platoons and realizing the full fuel saving benefits are 
challenging since many factors need to be considered such as 
the leading vehicle speed, relative position to the leading 
vehicle, platoonable miles, and others. Extensive research 
studies have been conducted to achieve this goal. Yu et al 
(2016) utilize a model predictive control (MPC) to optimize 
platoon speed and inter-vehicle distance in platoons for 
minimizing fuel consumption. Other papers (e.g., Ozatay et al 
(2014) and Luu et al (2010)) are focused on optimization of 
speed profiles using dynamic programming (DP). However, 
most of the existing literatures in this category (e.g., 
Caltagirone et al (2015) and Torabi (2017)) are focused on 
optimizing the speed profile for the lead vehicle as an efficient 
driving strategy. A large body of studies have been conducted 
to optimize the speed of a target vehicle in the presence of 
multiple platoonable vehicles on the same route at a 
microscopic level. Boysen et al (2018), Kalbitz (2017), and 

Sturm et al (2020) provide a comprehensive assessment of 
current platooning control methods and optimization factors. 

Although the optimization-based methods (e.g., MPC, DP) 

have demonstrated significant energy saving potentials in 

platooning applications, a priori knowledge of other vehicles 

on the road network during the prediction horizon or the entire 

trip are required. In practice, the priori knowledge of dynamic 

traffic information may be infeasible. Besides, these 

optimization-methods require high computational cost. 

Vehicle-to-cloud (V2C) communication can potentially be 

applied to implement the computational-expensive 

optimization methods. Applications of cloud computed DP 

framework in the optimization of hybrid electric vehicle and 

electric transit bus can be found in Wollaeger et al (2012) and 

Shi et al (2020), respectively. However, studies on fast 

algorithms for planning platoon speeds, which are suitable for 

real-time implementation, are rather limited. Deng and Ma 

(2014) proposed a fast Pontryagin Minimum Principle (PMP)-

based algorithm for planning optimal speed profiles for the 

leading vehicle of a platoon on highway. 

The contribution of this paper is to develop a two-level 

real-time implementable platooning framework for the 

following vehicle, which is an EV, to achieve the minimum 

energy consumption for given trips with platooning 

opportunities. The proposed EV platooning framework 

consists of a high-level speed planner and low-level speed or 

spacing control. This paper is focused on the design and 

validation of the high-level optimal speed planner based on 

analytical solutions derived using calculus of variation (COV). 

The paper is organized as follows. The two-level EV 

platooning framework is presented in Section 2. The problem 

statement is described in Section 3. A model for platooned and 

non-platooned EVs is presented in Section 4. The analytical 

solution is presented in Section 5. The method and 
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optimization results from simulation studies are discussed in 

Section 6. The conclusion is presented in Section 7. 

2. OPTIMAL SPEED PLANNER FRAMEWORK 

 

Figure 1. Framework for Real-Time Speed Planner. 

As shown in Figure 1, the speed optimization framework 

consists of two layers: a high-level speed planner and a low-

level speed/spacing control. In the high-level speed planner, 

the analytical solution is applied to optimize the vehicle speed 

at the macroscopic level for the entire trip based on current 

position and speed limits of the target EV and the schedules 

(e.g., entrance and exit of highway and average vehicle speed) 

of other vehicles on the same route. The optimization results 

from the high-level speed planner are periodically updated to 

reflect the updates on traffic condition (e.g., change of 

schedules of other vehicles).  Once the optimal speed profile 

is planned from the high-level speed planner, a low-level speed 

control will be applied when the vehicle is not platooned with 

other vehicles. If the target vehicle is platooned with the other 

vehicle, then an inter-vehicle space control (e.g., Yang et al 

(2021)) will be applied instead. This paper will be focused on 

the high-level speed planner. 

3. PROBLEM STATEMENT 

The optimization problem for the high-level speed planner 
is stated in this section. In this study, we are investigating a 
scenario where a target EV (ego vehicle) is traveling a 
predefined route with a lead vehicle, which may provide 
platooning potential, traveling on the same route at different 
initial starting points. The objective of this study is to optimize 
the vehicle speed profile during the entire trip, including: the 
catch-up phase, platooning phase, and breakaway phase to 
minimize the energy consumption of the ego vehicle during the 
trip while satisfying the predefined trip time constraint. The 
following assumptions are adopted in the study: 1) All vehicles 
on the route are equipped with necessary sensors, V2V devices 
to support vehicle platooning. A fixed inter-vehicle distance is 
considered in all platooning scenarios. 2) Priori knowledge of 
the entrance and exiting of the potential leading vehicle and its 
average speed and relative position are available. 3) The 
impacts of platooning formation and split at the microscopic 
level on the total energy consumption of the trip are negligible. 
4) All lead vehicles are controlled via cruise control, with small 
speed fluctuations such that the adverse impact of speed 
variation on energy consumption is negligible when compared 
to the benefit of platooning. Thus, platooning is the preferred 
driving strategy when a leading vehicle is nearby. 

4. EV MODEL 

The vehicle longitudinal dynamic model is based upon the 
road-load equation as shown in (1). 

 𝑚𝑎 = 𝐹𝑑 − 𝑚𝑔𝐶𝑟𝑟 𝑐𝑜𝑠( 𝜃) − 𝑚𝑔 𝑠𝑖𝑛( 𝜃) −
𝐶𝑑𝜌𝐴𝑣2

2
 (1) 

where  𝑚 is vehicle mass, 𝑎 is vehicle acceleration, 𝐹𝑑 is the 
driving force of the vehicle, 𝐶𝑟𝑟 is the rolling resistance 
coefficient, 𝜃 is the road grade, 𝐶𝑑 is the aerodynamic drag 
coefficient, 𝜌 is the air density, 𝐴 is the surface area of the 
vehicle, and 𝑣 is the vehicle’s velocity. Note that when there is 
no platooning 𝐶𝑑 = 𝐶𝑑,𝑁𝑃 = 0.5. When the ego vehicle is 

platooning with a lead vehicle, 𝐶𝑑 = 𝐶𝑑,𝑃 = 0.3 in this study, 

Alam et al (2010). 

The power required to overcome resistances acting against 
the EV can be seen in (2). 

𝑃 =
𝑚𝑎 + 𝑚𝑔𝐶𝑟𝑟 𝑐𝑜𝑠( 𝜃) + 𝑚𝑔 𝑠𝑖𝑛( 𝜃) + 0.5𝐶𝑑𝜌𝐴𝑣2

𝜂
𝑣 (2) 

where η is the powertrain efficiency of the EV. η was assumed 
to be constant throughout the trip, Burt et al (2008). 

The overall energy consumption of the EV over the distance 
can be calculated as below, Han et al (2019). 

𝐸𝑑 = ∫ 𝐹𝑑(𝑡)𝑣(𝑡)𝑑𝑡 =
𝑡𝑓

0

∫ 𝐹𝑑(𝑥)𝑑𝑥
𝑥𝑓

0

(3) 

𝐸𝑑 = ∫ (𝑚𝑣
𝑑𝑣

𝑑𝑠
+ 𝑚𝑔(𝐶𝑟𝑟 𝑐𝑜𝑠( 𝜃(𝑥)) + 𝑠𝑖𝑛( 𝜃(𝑥))) +

𝐶𝑑𝜌𝐴𝑣2

2
) 𝑑𝑥

𝑥𝑓

0

(4) 

𝐸𝑑 =
1

2
𝑚(𝑣𝑓

2 − 𝑣0
2) + 𝑚𝑔𝛥ℎ + 𝑚𝑔𝐶𝑟𝑟𝛥 

+
𝜌𝐴

2
∫ 𝐶𝑑(𝑥)𝑣2(𝑥)𝑑𝑥

𝑥𝑓

0

(5) 

where 𝐸𝑑 is the energy required to cover a distance of 𝑥𝑓 in time 

𝑡𝑓, 𝛥ℎ is the elevation change during the trip, and 𝛥𝑥 is the 

horizontal distance covered. The drag coefficient is a function 
of distance in platooning. As can be seen in (5), the overall 
energy consumption required to overcome the road grade and 
rolling resistance is independent of the speed profile. 

The impact of vehicle speed fluctuations on the energy 
consumption due to aerodynamic resistance is described in (6), 
Han et al (2019): 

𝜌𝐴

2
∫ 𝐶𝑑(𝑥)𝑣2(𝑥)𝑑𝑥

𝑥𝑓

0

=
𝐶𝑑𝜌𝐴(�̅�2 + 𝛥𝑣2)𝑥𝑓

2
(6) 

where �̅� = (∫ 𝑣(𝑠)𝑑𝑥)/𝑥𝑓
𝑥𝑓

0
 is the average velocity over 

position; 𝛥𝑣2 = (∫ (𝑣(𝑥) − �̅�)
2
𝑑𝑥)/𝑥𝑓

𝑥𝑓

0
 is variance of speed. 

According to (6), minimizing vehicle speed variance when 
𝐶𝑑 is constant, can result in the minimum energy consumption 
due to aerodynamic resistance. Thus, when operating in a non-
platooning portion of the trip, the ego vehicle will travel at a 
constant speed. However, in the platooning portions of the trip, 
the ego vehicle may be subject to small fluctuations in the 
leading vehicle’s speed with the assumption 4) in Section 3. 

Since the energy consumption due to the rolling resistance, 
road grade, and powertrain efficiency do not depend on the 
speed profile, the high-level speed planner will be focused on 
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minimization of the energy consumption due to the 
aerodynamic resistance. The part of driving force to overcome 
the aerodynamic resistance can be described in (7). 

 𝐹𝑑,𝑎 =
𝐶𝑑𝜌𝐴𝑣2

2
 (7) 

5. OPTIMIZATION OF FOLLOWING EV SPEED 

Figure 2 shows the position vs. time graph of the lead 
vehicle and the following vehicle. The points C and F denotes 
the starting point and ending point of the leading vehicle, 
respectively. The line C-F indicates that the leading vehicle is 
travelling at a constant speed. The points O and D’ denotes the 
starting point and ending point of the following vehicle, 
respectively. The line O-D’ presents the baseline operation 
where the following vehicle travels from O to D’ at a constant 
speed and is platooned with a lead vehicle traveling at the same 
speed. The line O-A and B-D’ represent the catch-up phase and 
break-away phase of the following vehicle, respectively, while 
the line A-B represents the platooning phase of the following 
vehicle. Point D represents the point where the following 
vehicle catches up and passes the lead vehicle while traveling 
at a constant speed from O to D’. The point D divides the line 
A-B into two platooning segments which are noted as A-D and 
D-B, respectively. The speed profile optimization problem for 
the entire trip is divided into two sub-problems: 1) speed profile 
optimization problem for the trip from O-D (catch-up and then 
platooning); and 2) speed profile optimization problem for the 
trip from D-D’ (platooning and then break-away). 

 

Figure 2: Time vs. position graph with key points. 

5.1 Optimization of Vehicle Speed in the Catch-up Phase 

Define 𝑣1 as the velocity of the following vehicle while 
platooning from A to D. Thus, 𝑣1 is the same as the leading 
vehicle speed denoted as 𝑣𝑙 . 𝑣2 represents the catch-up velocity 
of the following vehicle from O to A, and 𝑣3 represents the 
velocity of the vehicle when traveling the entirety of the trip at 
a constant speed without platooning from O to D. 𝑥1, 𝑥2, and 
𝑥3 represent the distances of the platooned portion (A-D), non-
platooned portion (O-A), and total distance of the trip from O 
to D, respectively. 𝑣1,𝑣2, and 𝑣3 generally satisfy the following 
inequality. The platooning velocity is assumed to be less than 
the optimal velocity traveled while not platooning, which is less 
than the catch-up velocity as shown in (8). 

 𝑣1 < 𝑣3 < 𝑣2 (8) 

The total distance of the trip from O to D is equal to the 

combined distance of the platooned portion (A-D) and non-

platooned portion (O-A) of the trip as shown in (9). 

 𝑥1 + 𝑥2 = 𝑥3 (9) 

Next, define term ∆ as the difference between 𝑣2 and 𝑣3 in 
(10). Note that ∆> 0 at all times. 

 𝑣2 = 𝛥 + 𝑣3 (10) 

Proposition 1: For a given total travel time from O to D 
(denoted as 𝑡3) and travel distance (𝑥3), the optimal speed 
profile to achieve the minimal energy consumption for a 
vehicle travelling from O to D is a constant velocity  at 𝑣3 (w.r.t 
line O-D in Figure 2) where 𝑣3 = 𝑥3 𝑡3⁄  , with the following 
assumptions: 1) all the candidate speed profiles have the same 

aerodynamic drag coefficients, 𝐶𝐷 and 𝐶�̅�, for non-platooning 
and platooning, respectively; 2) the energy consumptions due 
to rolling resistance in these two speed profiles are identical; 3) 
the energy consumptions due to road grade is fixed for a given 
route, while acceleration/deceleration are negligible. 

Proof: With the assumptions, the Proposition 1 can be 
proved by showing that the energy consumption due to 
aerodynamic resistance with speed profile O-D is the smallest, 
when compared to any other candidate such as O-A-D. First of 
all, a function 𝑓 is defined as the difference of energy 
consumption due to overcoming aerodynamic resistance 
between the platooning speed profile, O-A-D, and the optimal 
non-platooning speed profile, O-D, in (11). 

 𝑓 = 𝑘(𝑣1
2𝑥1 + 𝑣2

2𝑥2 − 𝑣3
2𝑥3) (11) 

where 𝑘 = 0.5�̄�𝐷𝜌𝐴 which is a constant; �̄�𝐷 is the aerodynamic 
coefficient of drag for a vehicle with no platooning. 

The travel time for segment O-A and segment A-D can be 
described in (12) and (13), respectively. 

 𝑡2 =
𝑥2

𝑣2
=

𝑥2

𝑣3+𝛥
 (12) 

 𝑡1 = 𝑡3 − 𝑡2 =
𝑥3

𝑣3
−

𝑥2

𝑣3+𝛥
 (13) 

With (9), (12) and (13), 
1v  can be calculated based on (14). 

 𝑣1 =
𝑥1

𝑡1
=

𝑥3−𝑥2

𝑡3−𝑡2
=

𝑥3−𝑥2
𝑥3
𝑣3

−
𝑥2

𝑣3+𝛥

 (14) 

Then, by replacing 𝑣1 in (11) with (14) and 𝑥1 with 𝑥3 − 𝑥2 
according to (14), 𝑓 in (11) can be rewritten as in (15).  

 𝑓 = 𝑘
[3𝑣3

2𝑥1+2𝑣3𝑥3𝛥+2𝑣3𝑥1𝛥+𝑥3𝛥2]𝛥2𝑥3(𝑥3−𝑥1)

(𝑣3𝑥1+𝑥3𝛥)2  (15) 

According to the physical meanings of the variables in (15), 
it is easy to show 𝑓 > 0. Thus, the Proposition 1 is proved. ■ 

To further simplify 𝑓, three new variables: 𝑟0, 𝑟, and 𝜙 are 
defined. 𝑟0 = 𝑥𝑂𝐶 𝑥3⁄  represents the ratio of the initial inter-
vehicle distance between the ego and lead vehicle, 𝑥𝑂𝐶 , to the 
total distance of the trip. 𝑟 = 𝑥1 𝑥3⁄  represents the ratio of the 
platooned distance to the total distance. 𝜙 = 𝛥 𝑣3⁄  represents 
the change of vehicle speed due to the catch-up process 
normalized with respect to 𝑣3. 

After being normalized by 𝑣3
2𝑥3, performing some 

algebraic manipulation, and substituting 𝑟, and 𝜙, 𝑣1
2𝑥1 +

𝑣2
2𝑥2 − 𝑣3

2𝑥3 becomes (16). 

𝛼 =
𝑣1

2𝑥1+𝑣2
2𝑥2−𝑣3

2𝑥3

𝑣3
2𝑥3

=
[3𝑟+2𝜙+2𝑟𝜙+𝜙2](1−𝑟)𝜙2

(𝑟+𝜙)2  (16) 
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Since the lead vehicle and the following vehicle meet at 
point A, the following relation can be established as 𝑥𝑂𝐶 +
𝑣1𝑡2 = 𝑣2𝑡2 which yields 

 𝑡2 =
𝑥𝑂𝐶

𝑣2−𝑣1
 (17) 

Combining (9), (10), and (14), 𝑡2 can be rewritten as in (18) 

 𝑡2 = 𝑥𝑂𝐶 [(𝑣3 + 𝛥) −
𝑥1

(
𝑥3
𝑣3

−
𝑥3−𝑥1
𝑣3+𝛥

)
]⁄  (18) 

Then, 𝑥1 can be expressed in (19) 

𝑥1 = 𝑥3 − (𝑣3 + 𝛥)𝑡2 = 𝑥3 −
𝑥𝑂𝐶(𝑣3+𝛥)

[(𝑣3+𝛥)−
𝑥1

(
𝑥3
𝑣3

−
𝑥3−𝑥1
𝑣3+𝛥 )

]

 (19) 

Divide both sides of the equation by 𝑥3 and simplify the 
equation using the definitions of 𝑟0, 𝑟, and 𝜙. Then, the 
following relation in (20) between 𝑟0, 𝑟, and 𝜙, can be resulted. 

 𝑟 = 1 −
𝑟0(𝜙+𝑟)

𝜙
 (20) 

From (20), 𝑟 is expressed as a function of 𝑟0 and 𝜙 in (21).  

 𝑟(𝑟0, 𝜙) =
(1−𝑟0)𝜙

𝜙+𝑟0
 (21) 

According to (16) and (21), it is easy to see that 𝛼 is a 
function of 𝑟0 and 𝜙 as shown in (22). 

𝛼(𝑟0, 𝜙) =
[3𝑟(𝑟0,𝜙)+2𝜙+2𝑟(𝑟0,𝜙)𝜙+𝜙2](1−𝑟(𝑟0,𝜙))𝜙2

(𝑟(𝑟0,𝜙)+𝜙)2  (22) 

Based on road-load equation, the energy consumption of a 
vehicle with platooning all the way at the optimal constant 
speed, 𝑣3, can be described in (23). 

 �̄�𝑂𝐷 = �̄�𝑎,𝑂𝐷 + 𝐸𝑟,𝑂𝐷 + 𝐸𝑔 + 𝐸𝑎𝑐𝑐  (23) 

where �̄�𝑎,𝑂𝐷  represents the energy consumption due to 

aerodynamic drag resistance with platooning, 𝐸𝑟,𝑂𝐷  is the 

energy loss due to rolling resistance; 𝐸𝑔 is the energy loss due 

to road grade; and 𝐸𝑎𝑐𝑐  is the energy consumed from 
acceleration. All terms are measured from the initial position, 
“O”, to the final position, “D”. 

Assuming acceleration is negligible over the course of the 
trip and the rolling resistance will be the same for any speed 

profile, the equality �̄�𝑂𝐷 = �̄�𝑎,𝑂𝐷  can be obtained. 

Following the same method for traveling directly from “O” 
to “D” with the same assumption, one can derive the energy 
from traveling from “O” to “A” to “D” in (24). Note that the 
vehicle is platooned in the segment A-D but not O-A. 

 𝐸𝑂𝐴𝐷 = 𝐸𝑎,𝑂𝐴 + �̄�𝑎,𝐴𝐷 = (�̄�𝑎,𝑂𝐴 + �̄�𝑎,𝐴𝐷) + �̃�𝑎,𝑂𝐴 (24) 

where �̄�𝑎,𝑂𝐴 and 𝐸𝑎,𝑂𝐴 represent the energy consumption due 

to aerodynamic resistance with and without platooning, 

respectively. �̃�𝑎,𝑂𝐴 represents the difference between �̄�𝑎,𝑂𝐴 and 

𝐸𝑎,𝑂𝐴 due to the change of aerodynamic drag coefficient. 

Define  𝜂 in (25) which normalizes the energy consumed in 

(24) to the energy consumed from �̄�𝑂𝐷 = �̄�𝑎,𝑂𝐷 . 

𝜂 =
𝐸𝑎,𝑂𝐴𝐷−�̄�𝑎,𝑂𝐷

�̄�𝑎,𝑂𝐷
=

(�̄�𝑎,𝐴𝐷+�̄�𝑎,𝑂𝐴)−�̄�𝑎,𝑂𝐷

�̄�𝑎,𝑂𝐷
+

�̃�𝑎,𝑂𝐴

�̄�𝑎,𝑂𝐷
(25) 

Since all the terms in (25) share the same reduced 
aerodynamic drag coefficient, (26) is resulted. 

 
(�̄�𝑎,𝐴𝐷+�̄�𝑎,𝑂𝐴)−�̄�𝑎,𝑂𝐷

�̄�𝑎,𝑂𝐷
=

𝑣1
2𝑥1+𝑣2

2𝑥2−𝑣3
2𝑥3

𝑣3
2𝑥3

= 𝛼 (26) 

In addition, �̃�𝑎,𝑂𝐴 �̄�𝑎,𝑂𝐷⁄  can be detailed as in (27). 

 
�̃�𝑎,𝑂𝐴

�̄�𝑎,𝑂𝐷
=

𝐶𝐷(𝑣3+𝛥)2(𝑥3−𝑥1)

�̄�𝐷𝑣3
2𝑥3

 (27) 

where �̃�𝐷 = 𝐶𝐷 − �̄�𝐷. 

Define  𝛽 = �̃�𝐷 �̄�𝐷⁄  as the ratio of  �̃�𝐷 to �̄�𝐷. In this study, 
𝛽 is assumed to be constant at 0.667. Then, with the 
definitions of 𝛽, 𝑟, and 𝜙, �̃�𝑎,𝑂𝐴 �̄�𝑎,𝑂𝐷⁄  can be simplified as 

�̃�𝑎,𝑂𝐴 �̄�𝑎,𝑂𝐷⁄ = 𝛽(1 + 𝜙)2(1 − 𝑟). Based on that, 𝜂 can be 

expressed as a function of 𝑟, and 𝜙 as shown in (35). 

 𝜂(𝑟0, 𝜙) = 𝛼(𝑟, 𝜙) + 𝛽(1 + 𝜙)2(1 − 𝑟) (28) 

Recall that 𝑟 is a function of 𝑟0, 𝜙, and 𝛽 is constant. Thus, 
𝜂 is a function of 𝑟0 and 𝜙. In practice, 𝑟0 is generally 
considered as a known disturbance. 𝜙 is considered as the 
control input in this optimization problem to find the optimal 𝜙 
w.r.t. the minimal 𝜂. The optimal 𝜙 can be solved using 
calculus of variation, with the first and second derivatives of 𝜂 
w.r.t. 𝜙 which are shown in (29) and (30), respectively. In 
addition, considering the constraint of speed, we have 𝜙 ∈
[𝜙𝑚𝑖𝑛 , 𝜙𝑚𝑎𝑥] where 𝜙𝑚𝑖𝑛 = 0 and 𝜙𝑚𝑎𝑥 = 𝑣𝑚𝑎𝑥 𝑣3⁄ . 

𝑑𝜂

𝑑𝜙
=

𝑟0(2(𝛽+1)𝜙3+3(𝛽+1)(𝑟0−1)𝜙2+6(𝛽+1)𝑟0𝜙−𝑟0
3+3𝑟0

2+3𝛽𝑟0−𝛽)

(𝑟0+𝜙)2   

  (29) 

𝑑2𝜂

𝑑𝜙2 =
2𝑟0((𝛽+1)𝜙3+3(𝛽+1)𝑟0𝜙2+3(𝛽+1)𝜙𝑟0

2+𝑟0
3+3𝛽𝑟0

2−3𝛽𝑟0+𝛽)

(𝑟0+𝜙)3  (30) 

Once the optimal 𝜙 is solved, the optimal catch-up speed 
can be calculated using (31). 

𝑣2 = 𝑣3(1 + 𝜙) (31) 

5.2 Optimization of Vehicle Speed in the Break-away Phase 

Proposition 2: Assume that the following vehicle has 
formed a platoon with the lead vehicle at the speed of v1. Then, 
finding the optimal speed profile for break-away process which 
corresponds to the segment D-B-D’ in Figure 2, is a direct 
extension of finding the optimal speed in the catch-up process 
which corresponds to the segment O-A-D in Figure 2. 

Proof: It was assumed that there is another lead vehicle 
traveling at 𝑣3 with initial inter-vehicle distance denoted by D-
F’ which is parallel with D’-F in Figure 3. Then, the original 
break-away process denoted by D-B-D’ is translated into a 
break-in process D-B’-D’ where D-B’ is parallel with B-D’. It 
is easy to show that the speed profile in D-B-D’ and the speed 
profile in D-B’-D’ will result in the same energy consumption, 
if the energy consumption during the acceleration and 
deceleration process is negligible in both speed profiles. This is 
due to the fact that, in both cases, the following vehicle travel 
at the same speed profiles with platoon and without platoon. 

As shown in (28), to minimize the 𝜂 in the break-away case, 
𝑟0 information is needed. To differentiate from the catch-up 
case in notation, 𝑟1, is defined for the break-away process as  
𝑟1 = 𝑥𝐹𝐷′ 𝑥𝐷𝐷′⁄ . The optimal 𝜙 in the break-away process can 
then be calculated in the same manner as the catch-up speed, 
using COV based on (28)-(30) with 𝜙 ∈ [𝜙𝑚𝑖𝑛 , 𝜙𝑚𝑎𝑥]. 
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Figure 3. Illustration of Connection between Catch-up Problem 

and Break-away Problem. 

6. SIMULATION STUDY AND ANALYSIS 

6.1 Impact of Catch-up Speed and 
0r  on Energy 

Consumption 

Figure 4 illustrates the impact of 𝜙 on 𝜂 at different 𝑟0 (from 
0.01 to 0.30) in the catch-up process (or 𝑟1 in the break-away 
process). Figure 5 shows the variation of 𝜂 over a wide range 
of 𝜙 with 𝑟0 = 0.13. It is shown from Figure 4, when 𝑟0 is small, 
𝜂 decreases with increasing 𝜙 until it reaches the minimal 
value. The optimal 𝜙 w.r.t. the minimum   gradually 

decreases as 
0r  increases (e.g., 𝜙 = 0.3 at 𝑟0 = 0.02 vs 𝜙 = 

0.155 at 𝑟0= 0.13). As 𝑟0 increases up to 0.3, the optimal 𝜙 
converges to zero. Thus, it can be concluded: 1) High catch-up 
speed is suggested to minimize the energy consumption during 
the trip from O-D, when 𝑟0 is small. 2) The optimal catch-up 
speed is slower as 𝑟0 increases in the range from 0.01 to 0.24, 
to achieve a balance between the energy consumption in the 
catch-up process (O-A) and platooning process (A-D). 3) When 
𝑟0 reaches 0.24 or higher, the optimal 𝜙 to achieve the 
minimum energy consumption during the trip is zero. In this 
case, the gain of energy consumption in the catch-up process 
offsets the benefits of platooning. 4) 𝑟0 = 0.24 is the break-
even point where deviating from the optimal speed profile with 
no platooning becomes less cost effective. The same 
conclusions can be drawn for the optimal values of 𝜙 when 𝑟0 
is replaced with 𝑟1 in the break-away process. 

 

Figure 4:   vs  for a given value of 
0r  and 

1r . 

6.2 Case Studies 

Six cases were studied to analyze the impact of initial and 
final inter-vehicle distance, 𝑥𝑂𝐶  and 𝑥𝐹𝐷′ on the optimal catch-

up speed (denoted as 𝑣𝑐,𝑜𝑝𝑡) and the optimal break-away speed 

(denoted as 𝑣𝑏,𝑜𝑝𝑡), respectively. In these case studies, 𝑣𝑙 , the 

total distance, and the optimal speed with no platooning are 
held constant at 26 m/s, 100 km, and 33.33 m/s, respectively. 
Cases 1-3, represent three different scenarios with different 
combinations of 𝑥𝑂𝐶  and 𝑥𝐹𝐷′, as shown in Figure 6 and Table 
1. As shown in Figure 6, Case 1 has a smaller 𝑥𝑂𝐶  and a larger 
𝑥𝐹𝐷′, as represented by the O-C1 and F1-D’, respectively. Case 
2 has comparable 𝑥𝑂𝐶  and 𝑥𝐹𝐷′, as represented by the O-C2 and 
F2-D’, respectively. In Case 3, 𝑥𝑂𝐶  is much larger than 𝑥𝐹𝐷′, as 
shown by O-C3 and F3-D’, respectively. 

 

Figure 5: Impact of   on   with 
0r  (or

1r ) = 0.13. 

Table 1. Effect of initial and final inter-vehicle distance on the 

optimal catch-up and break-away speed. 

Variable: 𝒙𝑶𝑪 

Case 𝑟0  𝑟1 𝑥𝑂𝐶[𝑘𝑚] 𝑥
𝐹𝐷′[𝑘𝑚] 𝑣𝑐,𝑜𝑝𝑡[

𝑚
𝑠

] 𝑣𝑏,𝑜𝑝𝑡[
𝑚
𝑠

] 

1 .220 .220 1 21 34.23 34.23 

2 .220 .220 5 17 34.23 34.23 

3 .220 .220 10 12 34.23 34.23 

 

 

Figure 6: Vehicle position vs. time with different combinations of 

𝑥𝑂𝐶 and 𝑥𝐹𝐷′ in Cases 1-3 

As shown in Figure 6, since 𝑣𝑙 is the same in the three cases, 
C3-F3, C2-F2, and C1-F1 are parallel to each other and the sum 
of 𝑥𝑂𝐶  and 𝑥𝐹𝐷′ are the same. Then, the relation in (32) is 
satisfied. Thus, there is a tradeoff between 𝑥𝑂𝐶  and 𝑥𝐹𝐷′. 

 𝑥𝑂𝐶 + 𝑥𝐹𝐷′ = 𝑥𝑂𝐷 − 𝑡𝑂𝐷𝑣𝑙 (32) 

where 𝑡𝑂𝐷 denotes the total travel time from O to D’. 

In addition, it is straightforward to show that 𝑟0 equals 𝑟1. 
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According to (20), 𝑣𝑐,𝑜𝑝𝑡 and 𝑣𝑏,𝑜𝑝𝑡 in Cases 1-3 are the same, 

as summarized in Table 1. The total energy consumption due to 
aerodynamic resistance (assuming the surface area of the 
vehicle is 2.5 m2 and air density is 1.225 kg/m3) and the break-
down in different segments (including catch-up portion, 
platooning portion, and break-away portion) are summarized in 
Table 1. As shown in Table 1, the energy consumption for the 
total trip and platooning portion are the same for all three cases. 
While there is a trade-off between the energy consumption in 
the catch-up portion and break-away portion, the sum of the 
two portions without platooning are the same since sum of 𝑥𝑂𝐶  
and 𝑥𝐹𝐷′ are the same as shown in (32). Thus, for a given 𝑣𝑙, the 
platooning distances are the same in all cases. 𝑥𝑂𝐶  has no effect 
on the optimal energy consumption. 

Table 2. Energy consumption due to aerodynamic resistance for 

Cases 1 through 3. 

Energy Consumption due to aerodynamic resistance. 

Case 
Catch-up 

Energy [J] 

Platooning 

Energy [J] 

Breakaway 

Energy [J] 

Total 

Energy [J] 

1 3.69 ∗ 106 3.55 ∗ 106 7.75 ∗ 107 8.47 ∗ 107 

2 1.84 ∗ 107 3.55 ∗ 106 6.27 ∗ 107 8.47 ∗ 107 

3 3.69 ∗ 107 3.55 ∗ 106 4.43 ∗ 107 8.47 ∗ 107 

Next, the impacts of 𝑣𝑙  on 𝑣𝑐,𝑜𝑝𝑡 and 𝑣𝑏,𝑜𝑝𝑡 were 

investigated in Cases 4-6. For these cases, the initial distance 
between the two vehicles, 𝑥𝑂𝐶 , and the total distance are held 
constant at 10 km and 100 km, respectively. 𝑣𝑙  was selected as 
27 m/s, 28 m/s, 29 m/s, respectively, as shown in Table 3. Due 
to different 𝑣𝑙, 𝑟0, which equals 𝑟1, was calculated as 0.19, 0.16, 
and 0.13, in Cases 4-6, respectively. 𝑣𝑐,𝑜𝑝𝑡 and 𝑣𝑏,𝑜𝑝𝑡 for all 

three cases are summarized in Table 3. It was found, a higher 
𝑣𝑙 will result in higher 𝑣𝑐,𝑜𝑝𝑡 and 𝑣𝑏,𝑜𝑝𝑡. This is because a faster 

lead vehicle will result in a lower 𝑟0 and 𝑟1 value. As shown in 
Figure 4, a lower 𝑟0 will directly lead to a higher value of 𝜙 and 
thus leading to faster 𝑣𝑐,𝑜𝑝𝑡 and 𝑣𝑏,𝑜𝑝𝑡. 

Table 3. Effect of 𝑣𝐿 on 𝑣𝑐,𝑜𝑝𝑡 and 𝑣𝑏,𝑜𝑝𝑡. 

Variable: 𝒗𝒍 

Case 𝑟0 𝑟1 𝑥
𝐹𝐷

′[𝑘𝑚] 𝑣𝐿[
𝑚
𝑠

] 𝑣𝑐,𝑜𝑝𝑡[
𝑚
𝑠

] 𝑣𝑏,𝑜𝑝𝑡[
𝑚
𝑠

] 

4 .190 .190 9 27 35.92 35.92 

5 .160 .160 6 28 37.26 37.26 

6 .130 .130 3 29 38.59 38.59 

7. CONCLUSION 

In this paper, a two-level real-time implementable EV 
platooning framework was proposed. A model-based analytical 
solution was derived using COV for optimizing the catch-up 
speed and breakaway speed for an ego vehicle with platoon 
potential due to the presence of a lead vehicle. The main 
conclusions include: 1) 𝑣𝑐,𝑜𝑝𝑡 and 𝑣𝑏,𝑜𝑝𝑡 depend on 𝑟0 and 𝑟1, 

respectively. 2) When 𝑣𝑙 is constant, 𝑟0 and 𝑟1 will be the same. 
Thus, 𝑣𝑐,𝑜𝑝𝑡 and 𝑣𝑏,𝑜𝑝𝑡 are identical. 3) 𝑟0 = 0.24 is the break-

even point. 4) If 𝑣𝑙 remains constant between cases, the catch-
up speed remains the same regardless of the initial distance 
between the ego and lead vehicle. 5) Higher 𝑣𝑙 will lead to 
lower 𝑟0 and 𝑟1 and thus higher 𝑣𝑐,𝑜𝑝𝑡 and 𝑣𝑏,𝑜𝑝𝑡. 
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