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Abstract—Variational Autoencoders (VAEs) have attracted a
lot of attention from the machine learning community in recent
years. The usage of VAEs in learning by demonstration and
robotics is still very restricted due to the need for effective
learning from only a few examples and due to the difficult
evaluation of the reconstruction quality. In this paper, we utilize
the current models of conditional variational autoencoders for the
purpose of teaching a robot simple actions from demonstration
in an incremental fashion. We in detail evaluate various training
approaches and define parameters that are important for en-
abling high-quality samples and reconstructions. The quality of
the generated samples in different stages of learning is evaluated
both quantitatively and qualitatively on the humanoid robot
Pepper. We show that the robot can reach a reasonable quality
of generated actions already after 20 observed samples.

Index Terms—imitation learning, VAE, humanoid robots, in-
cremental learning

I. INTRODUCTION

During the past years, Variational Autoencoders (VAEs) [1]
have been the subject of intense research in many different
application areas. Among the most common are image re-
construction and generation [2], object classification [3] and
recently also action recognition and reproduction [4].

However, implementing VAEs for tasks such as learning
by demonstration in real-world robotic scenarios is limited
as there are usually only a few training examples available.
Moreover, such models are expected to be able to learn
new tasks incrementally; e.g., they need to have an inbuilt
mechanism that would avoid catastrophic forgetting. Another
problem is how to evaluate and compare the quality of the
generated samples other than based on empirical observation.

In this paper, we explore and demonstrate whether and
how can the recent VAE models be implemented for few-shot
learning of robotic actions based on human demonstrations.
We choose the humanoid robot Pepper for action reproduction
as its arms (specifically shoulders and elbows) can easily
mimic human motion.

In our experiments, we first demonstrate which parameters
of the VAE network have the largest impact on the quantitative
and qualitative results. To evaluate the qualitative results, we
propose two metrics based on the statistical features of the
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Fig. 1. Overview of our few-shot incremental imitation learning scenario
with the humanoid robot Pepper. We demonstrate the tasks and their labels
to the robot, extract the sequences of joint positions from RGB images and
iteratively train the conditional Variational Autoencoder (VAE). After each
update, we can observe the learning progress using conditional sampling
and demonstration of the generated actions. If the action quality needs to
be improved, more examples can be provided.

original and reconstructed data. Next, we show how many
samples are needed for a VAE model to learn a single task
only. Finally, we compare two possible approaches toward
incremental learning of multiple tasks by a single model,
making use of the generative nature of VAEs.

The code and the dataset are available at https://github.com/
imitrob/robot action imitation VAE.git
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II. RELATED WORK

Our work explores how the current incremental VAE ap-
proaches might be used for teaching a humanoid robot simple
actions from few human demonstrations. The related work
on incremental and few-shot learning, as well as on the
usage of generative models for learning action sequences from
demonstration, is discussed in this section.

A. Incremental Learning with VAE

Incremental (or continual) learning deals with the situation
when not all the data are available in one go. Either new
data for already known classes might be coming, or even
new classes of the data can appear on the input. Here we
differentiate between the case when the task-id is provided
during the inference time (so-called task-incremental learning)
and the case when the trained model has to discriminate
between all the classes seen in the previous tasks without
reference to task-id (so-called class-incremental learning).

The typical approaches to incremental (or continual) learn-
ing for generative models are to store a subset of past data
or use a generative replay of past data by sampling from the
latent space [5], [6]. The former has high storage demands
(as well as might have privacy/safety issues), and the latter
is more computationally expensive. A different way how to
deal with newly coming data is to penalize weights in the
network while learning new tasks/classes to avoid catastrophic
forgetting of the network [7]. However, the problem is that
the difference in weights is not clearly corresponding to the
difference in outputs. In [8], the learning rate adapts according
to the uncertainty defined in the probability distribution of
the weights in networks. In [9], they find optimal additive
perturbation to the prior distribution induced by the encoder
for individual tasks.

There are recent proposals that show that class-incremental
(few-shot) learning might be enabled by training separate
VAEs for individual classes and then mixing them to-
gether [10], [11]. This approach can be used in the cases
of unbalanced data and also avoid catastrophic forgetting.
However, one drawback is its poor scalability with a growing
number of classes, another downside is that such an approach
does not allow for the generation of semantical transitions
between classes (which is one of the desired features of VAEs).

Label-conditioning of the VAE enables easier separation of
individual classes in the common latent space and therefore the
sampling is very convenient. An example of label-conditioned
VAE is ACTOR, an action-conditioned Transformer-based
architecture, that enables to encode and decode a sequence of
human motions [4]. The disadvantage is again that we cannot
generate semantical transitions across classes or use the model
for classification. The ACTOR architecture was tested on the
action dataset in non-incremental scenarios.

The above-mentioned methods of incremental learning for
VAEs have typically been tested on toy datasets such as
MNIST [12] and not for incremental learning of actions. In
this paper, we explore the ways how the ACTOR [4] architec-
ture might be utilized for few-shot incremental learning. We

compare 3 of these approaches (storing past data, resampling
from the distribution, and training separate VAEs for individual
classes) and explore their behaviour based on the model setting
and data itself.

Fig. 2. Examples of the three action classes in our dataset: dance, wave
and fly. We analyse the images with OpenPose [13] and extract angles of the
shoulders and elbows.

B. Generative models for Learning from demonstration

A survey [14] covers the latest research on deep learning and
reinforcement learning methods used for teaching a robot to
perform highly complex tasks. Supervised approaches struggle
with cascading failures when the agent trajectory diverges
from the demonstration (dubbed ”behavioural cloning”). Con-
sidering that we have enough data, deep generative models
seem to be a promising approach in imitation learning for
motor control. However, typically only the next state of the
robot is predicted (e.g., [15]). This approach is vulnerable to
cascading failures when we aim to generate a longer trajec-
tory. Another approach for few-shot learning is Generative
Adversarial Imitation Learning (GAIL), which lets the agent
interact with the environment during training, and therefore
can learn more robust controllers from fewer demonstrations,
but might fail to produce adequately diverse samples (dubbed
”mode collapse”). In [16] and [17], the benefits of both VAE
and GAN are combined to produce robust policies capturing
diverse behaviour. Noseworthy et al. [18] present a Task-
Conditioned Variational Autoencoder (TC- VAE) that enables
specification of parameters that are important for the given
task (or motion primitive) while the remaining parameters
are learnt from demonstrations. The approach is demonstrated
by learning individual movement primitives (very simple task
trajectories) that are represented by the positions of the end-
effector.

Many of the above-mentioned models consider the
availability of all the training data in advance, predict
only the next step of the trajectory, and consider simple
motions without periodicity. Compared to such approaches,
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we consider the case, when the new data are coming
continuously. We, therefore, evaluate the performance of
incremental VAE methods. Furthermore, we consider more
complex movements, that include also periodicity and try to
learn (and generate) the whole sequence of the data.

III. EXPERIMENTAL SETUP

In our experiments, we consider an imitation learning
scenario where the SoftBank Robotics’ humanoid robot
Pepper learns to repeat arm motion performed by a human
demonstrator. We use the robot’s inbuilt RGB camera to
record videos of the observed humans and analyse their joint
angles using OpenPose [13].

In the demonstrated scenario, we focus on arm motion, i.e.
we detect the shoulder and elbow joint angles (which can
be directly mapped to the robot’s joints). We also focus on
”planar” motion, that is the demonstrated actions only include
arm motion in the plane parallel to the camera view plane.
This restriction enables us to estimate the joint angles from
2D images only, which ensures the training data is maximally
precise and balanced and does not introduce any bias to the
model comparison. The camera frame rate was 10 fps, the
demonstrated actions took around 3 seconds. The recorded
actions are thus sequences of 27-33 poses, each extracted from
the raw RGB image using the OpenPose library.

For the training, we use a conditional VAE with transformer
encoder and decoder networks inspired by the ACTOR model
from Petrovich et al. [4]. Although we use the same network
design and condition the decoder on the action label, we do
not feed the action into the encoder network as the authors
since we did not find rapid improvement in such cases for
our dataset.

The inputs are the whole sequences of actions, the variable
lengths are handled with padding and additional masks that
inform the transformer network on the original sequence
length. We train the model to minimize the evidence lower
bound (ELBO) as follows:

LELBO(ϕ,θ) = Eqϕ(z|xi)[log pθ(xi|z, c)]−KL(qϕ(z|xi)||p(z)) (1)

where KL is the Kullback-Leibler divergence between the
encoder’s distribution qθ(z|x) and p(z), while Eqϕ(z|xi) is
the reconstruction term conditioned on class c.

The neural network parameters (such as the number of lay-
ers and heads in the Transformers) and optimizer were varied
for performance comparison and are described in Section VI.

IV. DATASET DESCRIPTION

Although this work focuses on the possible usage of a VAE
model in real-time incremental learning, we still collect a
dataset to be able to compare several approaches systemati-
cally on the same data (the data is presented to the model in
very small batches exactly as in the actual real-time scenario).

For the comparison of various learning approaches, we
collect a class-annotated training dataset composed of 3
action classes: wave, dance and fly. There are 20 samples for

each class (60 altogether) and another 10 samples per class
are used for the test set.

Each training sample is a timeseries of 27-33 poses, where
each pose is represented by 4 angles. The form is thus
4 × n: [θsl1 , θel1 , θsr1 , θer1 , ..., θsln , θeln , θsrn , θern ], where
θsl, θel, θsr, θer, are left shoulder angle, left elbow angle, right
shoulder angle, and right elbow angle, respectively. The angles
are in degrees and, for training, they are normalized between
−1 and 1. The actions are all periodic motion (waving,
dancing, pretending to fly) and the number of repetitions is
fixed across samples, so that the variability is only in the speed
and trajectory deviations. You can see examples of the training
actions in Fig. 2.

Fig. 3. Histograms of standard deviations (SD) and means of the training
data for each action class. There are 20 data samples for each action and the
actions are represented as sequences of joint poses. The means and SDs are
thus calculated for each action sample and each of the four joints. We use the
histograms to compare and estimate the quality of VAE sampled/reconstructed
actions (see Subsection V-B).

V. EXPERIMENTS

We consider a task-incremental learning scenario in which
the human demonstrator shows examples for one class at
a time and observes the learning progress through class-
conditioned sampling when the robot directly performs the
desired actions. Since the class name (e.g. wave, fly or dance)
is provided along with the sample, it is possible to either train
a single VAE model conditioned on the class or to initiate a
new VAE instance each time a new class type appears and
train it on the corresponding data.

Both approaches have advantages and disadvantages: train-
ing a separate model for each action type enables us to
finetune the training parameters (such as latent vector size,
learning rate, network parameters etc.) and the model cannot
suffer from catastrophic forgetting since it is class-specific. In
comparison, a single multi-class VAE is a more scalable option
for a larger number of classes and the probabilistic latent space
enables sampling of transitions between two or more different
class types (provided the latent space is regularised). However,
extra mechanisms need to be added to avoid forgetting the
previously learned classes - for example, the commonly used
generative replay [5], [6].

In our set of experiments, we compare the two above-
mentioned approaches and investigate the conditions that need
to be met to achieve the desired results (measured in terms of
plausibility of generated actions, see Subsection V-B).
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A. Experiment Overview

We compare two main approaches: training a new VAE
for each new class and training one VAE for all classes
presented in sequential order. In order to achieve optimal
results, we first compared the training hyperparameters and
observed their impact on the test loss and task accuracy. The
order of experiments is thus following:

• Comparison of hyperparameters - we perform a
hyperparameter grid search over both VAE-specific
and learning-specific parameters. From the former, we
compare the dimensionality of the latent space and
parameters of the transformer encoder and decoder
networks (number of attention heads and layers). From
the latter, we compare the selected optimizers, batch size
and number of iterations on each batch.

• Task-incremental learning of three individual class-
specific VAEs using the selected hyperparameters.

• Task-incremental learning of a single VAE first without
generative replay, then using two generative replay
approaches differing in the time at which samples of the
previous actions are added.

For the generative replay, we save the weights of the trained
model each time before updating on samples from a new class.
We then use these saved models to generate samples of the
class they were last trained on, select only the samples which
meet our sample accuracy metrics (see Subsection V-B) and
mix them together with the currently trained class. You can
see the different mixing methods and their impact in Section
VI.

Fig. 4. Impact of the used optimizer (left) and latent space dimensionality
(right) on the final quality of the generated samples. For clarity, we show
Robustness for the VAE model trained on the dance class only, although the
trend was similar for other classes as well.

B. Evaluation metrics

Since we are interested in qualitative results rather than
quantitative, we create our own metrics that measure the
statistical features of the output actions such as the mean and
standard deviation (SD) over the whole sequence and for each
joint. The mean informs us whether the model learned the
default joint positions for the given action, SD reflects whether
the model learned to reconstruct the periodic motion.

You can see the histograms of means and SDs for all
joints in Fig. 3. Based on these ground truth features, we
specify for each class ci={1,2,3}, joint ti={1,...,4} and statistical

feature fi=µ,σ an interval [αlow, αhigh]ci,ti,fi within which
the action’s mean or SD should fit to be considered as valid.
During evaluation, we retrieve N actions from the model and
evaluate what percentage of samples sj would fit with their
features within all the intervals [αlow, αhigh]ci,t,f for the given
class i. We refer to the resulting metrics as Sample Accuracy
Aci :

Aci =
1
N

N∑
j=1

1[αlow ≤ sj ≤ αhigh]t,f,ci (2)

Similarly as in [18], we use our Sample Accuracy to
measure the Class Success and Robustness for the trained
model:

• Class Success measures the Sample Accuracy for
reconstructions of the testing data (N = 10 samples per
class), e.g. how many of the 10 reconstructed samples
were valid.

• Robustness stands for the Sample Accuracy of random ac-
tions generated from the learned prior conditioned on the
action/class label (we use N = 100 samples per class).

Note that Robustness is more important than Class Success
for the imitation learning scenario as it shows the percentage
of plausible actions that the robot makes during inference.
To make the Robustness metric more informative, we further
distinguish the Sample Accuracy into three levels of precision:
difficult, allowing zero tolerance for deviation of some of
the sample features from their predefined intervals, medium,
allowing 15 % deviation of the sample features from the
predefined ground truth intervals, and easy, allowing 25 %
deviation from the predefined intervals. Note that even in
the easy scenario, the samples could be still empirically
recognized.

VI. RESULTS

A. Comparison of hyperparameters

To find the most stable and the best-performing model, we
perform a hyperparameter grid search. In the VAE architecture,
we vary the latent vector size (dimensionality of the latent
space) and the hyperparameters of the Transformer encoder
and decoder networks (number of attention heads and number
of layers). In the training scheme, we vary the optimizer, batch
size and number of iterations on each batch.

1) VAE parameters: Based on our hyperparameter grid
search, we find that there is a narrow range of the latent
vector sizes that produce the optimal results and the model
fails to learn when the dimensionality of the latent space is
too big or too small (see Fig. 4). We obtain the best results
with 12-D latent vectors for the class-specific VAEs and 16-D
latent vectors for the multi-class VAE scenario.

Next, we observe that the Transformer network hyperpa-
rameters such as the number of layers and attention heads can
have a large influence on the model’s capability to capture
variance/periodicity in the time series. For example, with the 8
attention heads and 2 layers, the model cannot reconstruct the
variance across the time series (e.g., the robot found the right
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TABLE I
COMPARISON OF CLASS SUCCESS AND ROBUSTNESS METRICS FOR A

VAE TRAINED ON THE DANCE CLASS ONLY, WITH BATCH SIZE 1 AND 5.
WE SHOW THE RESULTS AFTER S5,10,15,20 TRAINING SAMPLES

Batch Size Metric S5 S10 S15 S20

1 Class Success 0.0 0.17 0.1 1.0
Robustness 0.0 0.78 0.94 0.97

5 Class Success 0.0 0.0 0.13 0.18
Robustness 0.0 0.03 0.47 0.79

position but was not moving). A reduced number of layers
(1) and heads (4) enables the model to generate the sequences
including the periodic motion.

2) Learning parameters: We compared the convergence
of three different optimizers in the case of an incremen-
tal learning scenario with few samples. We compared the
commonly used Adam optimizer [19], Stochastic Gradient
Descent (SGD), and the recently proposed AdaBelief [20]. The
AdaBelief optimizer was outperformed by the Adam optimizer
for all the training scenarios. Furthermore, Adam provided
more stable results across various parameter setups compared
to SGD and we thus used it for the subsequent experiments
(see the comparison in Fig. 4).

Next, we tried multiple training scenarios in terms of batch
size (number of samples presented at each iteration) and
number of iterations for each batch. We varied the batch size
between 1 and 10 samples. Although larger batches lead to
slightly lower final loss, we found smaller accuracy of the
generated samples probably due to overfitting (see Table I).
The best results in terms of Robustness were thus obtained
with batch size 1.

Last, we varied the number of weight updates for each
sample (corresponding to the number of epochs). Since we
cannot iterate over the whole dataset in the online scenario,
we update the weights on each presented sample N times. We
found that the highest sample accuracy can be obtained for
our scenario with 5 ≤ N ≤ 10.

Based on the hyperparameter grid search, we used for all
the subsequent experiments a VAE architecture with 1 hidden
layer and 4 attention heads, 12-D latent vectors for class-
specific VAE and 16-D latent vectors for the multi-class VAE.
The training was done with Adam optimizer and batch size
1, while each sample was presented to the network 5 times
(for the class-specific VAEs) or 10 times (for the multi-class
VAE).

B. Class-specific VAEs

Using the optimal learning hyperparameters, we trained a
specialised VAE for each class to see how many samples are
needed for optimal results. As you can see in Fig. 5, each
class has different convergence and thus requires a different
minimum number of samples for optimal accuracy. For ex-
ample, in the case of the dance action, around 12 samples
are needed to get 100 % accuracy for the easy threshold of
Sample Accuracy, while the whole set of 20 samples is needed
to achieve 100 % in the case of the fly action.

Fig. 5. Overview of the single-task VAEs based on their specialization (dance,
fly or wave) and the provided number of training samples (x-axis, 1-20).
The top row shows the Robustness for each model, e.g. the percentage of
conditional samples generated by the model that have the desired statistical
features (see Subsection V-B for details). We show three different curves (easy,
medium, difficult) based on how tight the range for the desired features is. In
the bottom row, we show the test loss calculated on the testset of 10 actions
for each task.

Overall, we show that the few-shot incremental learning of a
single class is possible using the sequential VAE. However, the
training can fail completely with slightly altered hyperparam-
eters and it is thus always necessary to perform a grid search.
Furthermore, although our data are more complex than the
typically used data for action classification from few samples,
they are still quite simple and with minimal noise compared to
real human demonstrations. Tuning a model for very complex
data could be much more challenging in the few-shot scenario.

Fig. 6. Comparison of task-incremental learning scenarios using a class-
conditioned sequential VAE. We show the Robustness (upper row, see Section
V-B for metric details) and loss (lower row) for each of the classes with
increasing number of presented training samples. In the Generative Replay
scenarios, weights of the model are saved when a new class appears and
are used for sample generation in later stages. In the Continuous Sampling
scenario (centre), the samples from previous tasks are continuously mixed with
the new samples, while in the rightmost approach, the model is retrained on
mixed samples from previous tasks only after it finishes learning the current
class.

C. Multi-class incremental VAE

We compare three possible scenarios of how the individual
classes might be learned within one class-conditioned VAE:
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1) Naı̈ve approach: we present samples for one task at a
time and observe the Sample Accuracy during training.

2) Generative replay with continuous sampling: we save
the weights of the model at the moment a new class is
presented and use it to generate samples for further replay.
We continuously mix the samples from previous tasks with
the new training data.

3) Generative replay with replay after new class: We
generate samples in the same way as in 2), but we first retrain
the model on the new class only and then, after the learning
of the class is finished, we retrain the model with a mixture
of samples from all the classes learned by that time.

For the results, see Fig. 6. The naı̈ve model forgets the
previous task right after it is presented with a new one.
However, you can see that each task reaches high Sample
Accuracy much faster compared to the individual task-specific
VAEs in Fig. 5. This indicates that the model can make use of
the previously learned tasks and does not need to start learning
from scratch. In terms of loss and accuracy of the generated
actions, both presented incremental scenarios with generative
replay achieved similar results in the final stage of learning.
However, the generative replay with continuous sampling is
able to provide better results while a new task is presented.
Please note that in Fig. 6, both the loss and Sample Accuracy
improve rapidly in the last step of the Generative Replay after
the new task as the model is retrained on samples from all
three previously learned tasks.

In terms of loss and accuracy of the generated actions,
both presented incremental scenarios with generative replay
achieved similar results in the final stage of learning. Although
the final performance is slightly lower than in the case of the
individual class-specific VAEs, such a model can be potentially
used for traversing over the latent space and generating novel
types of actions based on the combination of the known ones.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we explore the possible approaches toward
task-incremental few-shot learning of actions from human
demonstrations using a conditional VAE. Firstly, we show
whether and how it is possible to train a VAE on as few as 20
examples per class so that it can generate semantically accurate
actions based on the given task label. Secondly, we compare
two task-incremental learning approaches based on generative
replay that enable learning of a potentially unlimited number
of classes within a single VAE model (see Fig 6).

We train and evaluate the model on real-world data using
a humanoid robot Pepper and sequences of human joint posi-
tions retrieved from RGB images using the OpenPose library
[13]. In our future work, we plan to extend this architecture
to more complex tasks such as object manipulation annotated
with natural language descriptions rather than simple task-ids.
If successful, the proposed approach could enable us to teach
robots new skills in a more natural way similar to how we
teach infants - by showing them examples and observing their
progress as they try to repeat our actions.
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